A057325 First member of a prime quadruple in a p^2+p-1 progression.
3, 11, 53, 1693, 2663, 4423, 16831, 17609, 36229, 49801, 94961, 121493, 150869, 176303, 183761, 188011, 210901, 213833, 218579, 272903, 300301, 329671, 439511, 444791, 453023, 469613, 518813, 531911, 546071, 559703, 570719, 614279, 705781
Offset: 1
Keywords
Examples
3 -> 3^2+3-1 = 11 -> 11^2+11-1 = 131 -> 131^2+131-1 = 17291 hence the quadruple (3,11,131,17291).
Links
Programs
-
Mathematica
okQ[n_] := And@@PrimeQ/@NestList[#^2 + # - 1 &, n, 3]; Select[ Prime[ Range[ 60000]], okQ] (* Harvey P. Dale, Jan 05 2011 *)
-
PARI
is(n)=for(k=1,4,if(!isprime(n),return(0));n=n^2+n-1);1 \\ Charles R Greathouse IV, Sep 13 2013
Extensions
Offset changed by Andrew Howroyd, Aug 14 2024
Comments