cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A057325 First member of a prime quadruple in a p^2+p-1 progression.

Original entry on oeis.org

3, 11, 53, 1693, 2663, 4423, 16831, 17609, 36229, 49801, 94961, 121493, 150869, 176303, 183761, 188011, 210901, 213833, 218579, 272903, 300301, 329671, 439511, 444791, 453023, 469613, 518813, 531911, 546071, 559703, 570719, 614279, 705781
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Comments

I found only one prime 5-tuple so far: (3,11,131,17291,298995971).
Subsequence of A057324. - Pierre CAMI, Sep 13 2013

Examples

			3 -> 3^2+3-1 = 11 -> 11^2+11-1 = 131 -> 131^2+131-1 = 17291 hence the quadruple (3,11,131,17291).
		

Crossrefs

Programs

  • Mathematica
    okQ[n_] := And@@PrimeQ/@NestList[#^2 + # - 1 &, n, 3];
    Select[ Prime[ Range[ 60000]], okQ] (* Harvey P. Dale, Jan 05 2011 *)
  • PARI
    is(n)=for(k=1,4,if(!isprime(n),return(0));n=n^2+n-1);1 \\ Charles R Greathouse IV, Sep 13 2013

Extensions

Offset changed by Andrew Howroyd, Aug 14 2024

A057324 First member of a prime triple in a p^2 + p - 1 progression.

Original entry on oeis.org

2, 3, 11, 13, 53, 131, 233, 241, 281, 569, 659, 691, 761, 881, 1693, 2063, 2411, 2521, 2551, 2663, 2729, 2741, 2861, 3089, 4021, 4159, 4201, 4243, 4423, 4793, 6091, 7103, 7229, 7369, 7753, 7829, 8053, 8641, 8669, 9041, 9059, 9539, 9649, 9769, 10513
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Comments

There exist no such triples of the form p^2 + p + 1 because each third member is always divisible by 3.
Subsequence of A053184. - Pierre CAMI, Sep 13 2013

Examples

			2 -> 2^2+2-1 = 5 -> 5^2+5-1 = 29 hence the prime triple (2,5,29).
		

Crossrefs

Programs

  • Mathematica
    fmpQ[n_]:=AllTrue[NestList[#^2+#-1&,n,2],PrimeQ]; Select[Prime[Range[ 1300]],fmpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 08 2019 *)
  • PARI
    is(n)=for(k=1,3,if(!isprime(n),return(0));n=n^2+n-1);1 \\ Charles R Greathouse IV, Sep 13 2013

A136243 Numbers k in A008864 such that k^2 - k - 1 is prime.

Original entry on oeis.org

3, 4, 6, 12, 14, 20, 32, 42, 54, 60, 84, 90, 102, 104, 132, 150, 164, 182, 192, 194, 200, 234, 242, 264, 282, 332, 350, 374, 402, 420, 432, 434, 450, 462, 464, 500, 542, 570, 572, 660, 674, 684, 692, 710, 740, 744, 762, 770, 810, 864, 882, 942, 1014, 1040
Offset: 1

Views

Author

Lekraj Beedassy, Dec 24 2007

Keywords

Comments

See A053185 for the primes associated with a(n).

Crossrefs

Programs

  • PARI
    isok(k) = isprime(k-1) && isprime(k^2-k-1); \\ Michel Marcus, Dec 19 2022

Formula

a(n) = A053184(n) + 1.

Extensions

a(20)=194 inserted by Georg Fischer, Dec 18 2022

A243016 Number of solutions for k*n/(k+n) = p for integer k > 0 and prime p.

Original entry on oeis.org

0, 0, 1, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Derek Orr, May 29 2014

Keywords

Comments

It is unknown whether a(6) = 3 is the highest number in this sequence.
No terms higher than 3 among the first 10000 terms. - Antti Karttunen, Jan 20 2025
a(n) is the number of primes among n-1, n/2 and q, where q satisfies q*(q+1)=n. So a(n) <= 2 for n > 6, and a(n) = 2 iff n != 6 is in A053185 + 1 or A077068. - Jinyuan Wang, Jan 20 2025

Examples

			4*k/(4+k) has two solutions: k=4, p=2 and k=12, p=3. Thus a(4) = 2.
From _Antti Karttunen_, Jan 18 2025: (Start)
For n=3, the ratio (k*n)/(k+n) obtains for k=1..3*(3-1) the values 3/4, 6/5, 3/2, 12/7, 15/8, 2, and only the last one of these is prime, therefore a(3) = 1.
For n=26, the only k such that (k*n)/(k+n) is a prime, is k=26, with (26^2)/(2*26) = 13, therefore a(26) = 1. (End)
		

Crossrefs

Programs

  • PARI
    A243016(n) = { my(s); sum(k=1, n*(n-1), s = (k*n)/(k+n); (1==denominator(s) && isprime(s))); }; \\ Edited by Antti Karttunen, Jan 18 2025

Formula

a(n) <= A063647(n). - Antti Karttunen, Jan 18 2025

Extensions

Data section extended up to a(105) and incorrect terms, that were caused by dropping of a(26) and a(27) (first discrepancies at n=26, 28, 30, 34, etc.) corrected by Antti Karttunen, Jan 18 2025

A290817 Primes of at least one of the forms p^2 +- p +- 1, where p is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 31, 41, 43, 109, 131, 157, 181, 271, 307, 379, 811, 929, 991, 1721, 1723, 2161, 2861, 3539, 3541, 3659, 4421, 4423, 4969, 5113, 6163, 6971, 8009, 8011, 9311, 10099, 10301, 10303, 10711, 16001, 17029, 17291, 17293, 19181, 19183, 22051, 22349, 22651
Offset: 1

Views

Author

Ralf Steiner, Aug 11 2017

Keywords

Comments

This sequence contains prime chains and prime trees using an appropriate mapping form p^2 +- p +- 1 in each step, such as the chain: 3 -> 5 -> 19 -> 379 -> 143263 -> 20524143907 and the tree: 41 -> {1721, 1723}.

Crossrefs

Programs

  • Magma
    {p^2+(-1)^k*p+(-1)^s:p in PrimesUpTo(150), s,k in [1..2]|IsPrime(p^2+(-1)^k*p+(-1)^s)}; //  Marius A. Burtea, Nov 28 2019
  • Maple
    select(isprime, [3,seq(op([p^2-p-1,p^2-p+1,p^2+p-1,p^2+p+1]),p=select(isprime,[seq(i,i=3..1000,2)]))]); # Robert Israel, Nov 27 2019
  • Mathematica
    Select[Union[Flatten[{(#^2 + # + 1 ), (#^2 + # - 1 ), (#^2 - # + 1 ), (#^2 - # - 1 )}] &[Prime[Range[100]]]], (PrimeQ[#]) &]
Showing 1-5 of 5 results.