cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A060885 a(n) = Sum_{j=0..10} n^j.

Original entry on oeis.org

1, 11, 2047, 88573, 1398101, 12207031, 72559411, 329554457, 1227133513, 3922632451, 11111111111, 28531167061, 67546215517, 149346699503, 311505013051, 617839704241, 1172812402961, 2141993519227, 3780494710543, 6471681049901, 10778947368421, 17513875027111, 27824681019587
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_11(n), where Phi_k is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are:
A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), this sequence (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..10]]): n in [0..20]]; // G. C. Greubel, Apr 15 2019
    
  • Maple
    A060885 := proc(n)
            numtheory[cyclotomic](11,n) ;
    end proc:
    seq(A060885(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Join[{1},Table[Total[n^Range[0,10]],{n,20}]] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 \\ Harry J. Smith, Jul 14 2009
    
  • PARI
    a(n) = polcyclo(11, n); \\ Michel Marcus, Apr 06 2016
    
  • Sage
    [sum(n^j for j in (0..10)) for n in (0..20)] # G. C. Greubel, Apr 15 2019

Formula

a(n) = n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
G.f.: (1+x^2*(1981+x*(66496+x*(534898+x*(1364848+x*(1233970+ x*(389104+x*(36829+x*(672+x)))))))))/(1-x)^11. - Harvey P. Dale, Jun 19 2011

A060887 a(n) = Sum_{j=0..12} n^j.

Original entry on oeis.org

1, 13, 8191, 797161, 22369621, 305175781, 2612138803, 16148168401, 78536544841, 317733228541, 1111111111111, 3452271214393, 9726655034461, 25239592216021, 61054982558011, 139013933454241, 300239975158033, 619036127056621, 1224880286215951, 2336276859014281, 4311578947368421
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_13(n) where Let Phi_k is the k-th cyclotomic polynomial.

Crossrefs

Programs

  • Magma
    [(&+[n^j: j in [0..12]]): n in [0..20]]; // G. C. Greubel, Apr 14 2019
    
  • Maple
    A060887 := proc(n)
            numtheory[cyclotomic](13,n) ;
    end proc:
    seq(A060887(n),n=0..20) ; # R. J. Mathar, Feb 11 2014
  • Mathematica
    Table[1 + Sum[n^j, {j, 1, 12}], {n, 0, 20}] (* G. C. Greubel, Apr 14 2019 *)
  • PARI
    a(n) = { n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 } \\ Harry J. Smith, Jul 14 2009
    
  • PARI
    A060887(n)=polcyclo(13,n) \\ M. F. Hasler, Dec 31 2012
    
  • Sage
    [sum(n^j for j in (0..12)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1.
G.f.: (x^12 + 2718*x^11 + 363156*x^10 + 8452952*x^9 + 59276439*x^8 + 155812164*x^7 + 167537592*x^6 + 74214648*x^5 + 12642423*x^4 + 691406*x^3 + 8100*x^2 + 1)/(1-x)^13. - Colin Barker, Oct 29 2012
a(n) = (n^13-1)/(n-1) with a(1) = 13 = lim_{x->1} a(x). - M. F. Hasler, Dec 31 2012

Extensions

Name changed by G. C. Greubel, Apr 14 2019

A102909 a(n) = Sum_{j=0..8} n^j.

Original entry on oeis.org

1, 9, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111, 235794769, 469070941, 883708281, 1589311291, 2745954241, 4581298449, 7411742281, 11668193551, 17927094321, 26947368421, 39714002329, 57489010371, 81870575521, 114861197401
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 01 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), this sequence (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..8]]): n in [0..30]]; // G. C. Greubel, Feb 13 2018
    
  • Mathematica
    1 + Sum[Range[0, 30]^j, {j, 1, 8}] (* G. C. Greubel, Feb 13 2018 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,9,511,9841,87381,488281,2015539,6725601,19173961},30] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    a(n)=n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [sum(n^j for j in (0..8)) for n in (0..30)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = (n^2+n+1) * (n^6+n^3+1) and so is never prime. - Jonathan Vos Post, Dec 21 2012
G.f.: (x^8 + 162*x^7 + 3418*x^6 + 14212*x^5 + 16578*x^4 + 5482*x^3 + 466*x^2 + 1)/(1-x)^9. - Colin Barker, Nov 05 2012, edited by M. F. Hasler, Dec 31 2012
a(n) = (n^9-1)/(n-1) with a(1) = 9. - L. Edson Jeffery and M. F. Hasler, Dec 30 2012
E.g.f.: exp(x)*(1 + 8*x + 247*x^2 + 1389*x^3 + 2127*x^4 + 1206*x^5 + 288*x^6 + 29*x^7 + x^8). - Stefano Spezia, Oct 03 2024

Extensions

Offset corrected by N. J. A. Sloane, Dec 30 2012

A104376 a(n) = Sum_{j=0..13} n^j.

Original entry on oeis.org

1, 14, 16383, 2391484, 89478485, 1525878906, 15672832819, 113037178808, 628292358729, 2859599056870, 11111111111111, 37974983358324, 116719860413533, 328114698808274, 854769755812155, 2085209001813616, 4803839602528529, 10523614159962558, 22047845151887119
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 16 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), this sequence (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..13]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011
    
  • Mathematica
    Table[1+Sum[n^j, {j,1,13}], {n,0,20}] (* G. C. Greubel, Apr 14 2019 *)
    LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,14,16383,2391484,89478485,1525878906,15672832819,113037178808,628292358729,2859599056870,11111111111111,37974983358324,116719860413533,328114698808274},20] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    a(n)=sum(j=0,13, n^j) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [sum(n^j for j in (0..13)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
G.f.: (5461*x^12 + 1119288*x^11 + 37443654*x^10 + 372458048*x^9 + 1409085783*x^8 + 2263446576*x^7 + 1598944452*x^6 + 484853760*x^5 + 57484467*x^4 + 2163032*x^3 + 16278*x^2 + 1)/(1-x)^14. - Colin Barker, Nov 04 2012

Extensions

Name changed by G. C. Greubel, Apr 14 2019

A104682 a(n) = Sum_{j=0..14} n^j.

Original entry on oeis.org

1, 15, 32767, 7174453, 357913941, 7629394531, 94036996915, 791260251657, 5026338869833, 25736391511831, 111111111111111, 417724816941565, 1400638324962397, 4265491084507563, 11966776581370171, 31278135027204241, 76861433640456465, 178901440719363487
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 22 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), this sequence (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

Formula

a(n) = n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
a(n) = (n^2 + n + 1) * (n^4 + n^3 + n^2 + n + 1) * (n^8 - n^7 + n^5 - n^4 + n^3 - n + 1). - Jonathan Vos Post, Apr 23 2005
G.f.: (x^14 +10908*x^13 +3423487*x^12 +162086420*x^11 +2236727781*x^10 +11806635128*x^9 +27116815299*x^8 +28635678216*x^7 +13957353555*x^6 +2999111468*x^5 +253732221*x^4 +6684068*x^3 +32647*x^2 +1)/(1-x)^15. - Colin Barker, Nov 04 2012

Extensions

More terms from Harvey P. Dale, Jun 11 2011
Name changed by G. C. Greubel, Apr 15 2019

A105067 a(n) = Sum_{j=0..11} n^j.

Original entry on oeis.org

1, 12, 4095, 265720, 5592405, 61035156, 435356467, 2306881200, 9817068105, 35303692060, 111111111111, 313842837672, 810554586205, 1941507093540, 4361070182715, 9267595563616, 18764998447377, 36413889826860
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 05 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), this sequence (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), A105312 (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1: n in [0..20]]; // Vincenzo Librandi, May 01 2011
    
  • Mathematica
    1+Sum[Range[0,20]^j, {j,1,11}] (* G. C. Greubel, Apr 13 2019 *)
  • PARI
    a(n)=polcyclo(11,n)+n^11 \\ Charles R Greathouse IV, Sep 03 2011
    
  • Sage
    [sum(n^j for j in (0..11)) for n in (0..20)] # G. C. Greubel, Apr 13 2019

Formula

Factorization of the polynomial into irreducible components over integers: n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 = +- (n + 1) * (n^2 - n + 1) * (n^2 + 1) * (n^2 + n + 1) * (n^4 - n^2 + 1). - Jonathan Vos Post, Apr 06 2005
G.f.: (1365*x^10 + 116480*x^9 + 1851213*x^8 + 8893248*x^7 + 15593370*x^6 + 10568064*x^5 + 2671890*x^4 + 217152*x^3 + 4017*x^2 + 1)/(x - 1)^12. - Colin Barker, Oct 29 2012

Extensions

Signature changed by Georg Fischer, Apr 13 2019

A105312 a(n) = Sum_{j=0..15} n^j.

Original entry on oeis.org

1, 16, 65535, 21523360, 1431655765, 38146972656, 564221981491, 5538821761600, 40210710958665, 231627523606480, 1111111111111111, 4594972986357216, 16807659899548765, 55451384098598320, 167534872139182395, 469172025408063616, 1229782938247303441
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 30 2005

Keywords

Crossrefs

Cf. similar sequences of the type a(n) = Sum_{j=0..m} n^j are: A000027 (m=1), A002061 (m=2), A053698 (m=3), A053699 (m=4), A053700 (m=5), A053716 (m=6), A053717 (m=7), A102909 (m=8), A103623 (m=9), A060885 (m=10), A105067 (m=11), A060887 (m=12), A104376 (m=13), A104682 (m=14), this sequence (m=15), A269442 (m=16), A269446 (m=18).

Programs

  • Magma
    [(&+[n^j: j in [0..15]]): n in [0..20]]; // Vincenzo Librandi, May 01 2011 (modified by G. C. Greubel, Apr 14 2019)
    
  • Maple
    a:= n-> add(n^k, k=0..15):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 04 2012
  • Mathematica
    Prepend[Table[Total[n^Range[0,15]],{n,20}],1]  (* Harvey P. Dale, Jan 19 2011 *)
  • PARI
    vector(20, n, n--; sum(j=0,15, n^j)) \\ G. C. Greubel, Apr 14 2019
    
  • Sage
    [sum(n^j for j in (0..15)) for n in (0..20)] # G. C. Greubel, Apr 14 2019

Formula

a(n) = n^15 + n^14 + n^13 + n^12 + n^11 + n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n^1 + 1.
G.f.: (21845*x^14 + 10412160*x^13 + 689427979*x^12 + 12966588160*x^11 + 93207091581*x^10 + 296077418240*x^9 + 446019954555*x^8 + 326065923072*x^7 + 113735241015*x^6 + 17786608768*x^5 + 1095139065*x^4 + 20476160*x^3 + 65399*x^2 +1 )/(x-1)^16. - Colin Barker, Nov 04 2012

Extensions

More terms from Harvey P. Dale, Jan 19 2011
Name changed by G. C. Greubel, Apr 14 2019

A342689 Square array read by antidiagonals (upwards): A(n,k) = (k^Fibonacci(n) - 1) / (k - 1) for k >= 0 and n >= 0 with lim_{k -> 1} A(n,k) = A(n,1) = Fibonacci(n).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 7, 4, 1, 1, 0, 1, 8, 31, 13, 5, 1, 1, 0, 1, 13, 255, 121, 21, 6, 1, 1, 0, 1, 21, 8191, 3280, 341, 31, 7, 1, 1, 0, 1, 34, 2097151, 797161, 21845, 781, 43, 8, 1, 1, 0, 1, 55, 17179869184, 5230176601, 22369621, 97656, 1555, 57, 9, 1, 1, 0
Offset: 0

Views

Author

Werner Schulte, May 18 2021

Keywords

Comments

Replacing Fibonacci(n), A000045, with Lucas(n), A000032, you get another square array B(n,k). The terms satisfy the same recurrence equation B(n,k) = (k - 1) * B(n-1,k) * B(n-2,k) + B(n-1,k) + B(n-2,k) for k >= 0 and n > 1 with initial values B(0,k) = k+1 and B(1,k) = 1. Please take account of lim_{k -> 1} (k^Lucas(n) - 1) / (k - 1) = Lucas(n).

Examples

			The array A(n,k) for k >= 0 and n >= 0 begins:
n \ k: 0  1           2          3        4     5    6    7  8  9  10  11
=========================================================================
   0 : 0  0           0          0        0     0    0    0  0  0   0   0
   1 : 1  1           1          1        1     1    1    1  1  1   1   1
   2 : 1  1           1          1        1     1    1    1  1  1   1   1
   3 : 1  2           3          4        5     6    7    8  9 10  11  12
   4 : 1  3           7         13       21    31   43   57 73 91 111 133
   5 : 1  5          31        121      341   781 1555 2801
   6 : 1  8         255       3280    21845 97656
   7 : 1 13        8191     797161 22369621
   8 : 1 21     2097151 5230176601
   9 : 1 34 17179869184
  10 : 1 55
  11 : 1 89
  etc.
		

Crossrefs

Cf. A011655 (column k = -1), A057427 (column 0), A000045 (column 1), A063896 (column 2), A000004 (row 0), A000012 (rows 1, 2), A000027 (row 3), A002061 (row 4), A053699 (row 5), A053717 (row 6), A060887 (row 7).

Formula

A(n,k) = (k - 1) * A(n-1,k) * A(n-2,k) + A(n-1,k) + A(n-2,k) for k >= 0 and n > 1 with initial values A(0,k) = 0 and A(1,k) = 1.
Showing 1-8 of 8 results.