A053871 a(0)=1; a(1)=0; a(n) = 2*(n-1)*(a(n-1) + a(n-2)).
1, 0, 2, 8, 60, 544, 6040, 79008, 1190672, 20314880, 387099936, 8148296320, 187778717632, 4702248334848, 127140703364480, 3691602647581184, 114562300528369920, 3784124901630435328, 132555364873399378432, 4908221631901073295360, 191549525877429961604096
Offset: 0
References
- R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..404 (First 100 terms from _T. D. Noe_)
- A. Ayyer, Determinants and Perfect Matchings, arXiv:1106.1465 [math.CO], 2011.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Bela Bollobas, The number of 1-factors in 2k-connected graphs, J. Combin. Theory Ser. B 25 (1978), no. 3, 363--366. MR0516268 (80m:05060) - _N. J. A. Sloane_, Mar 26 2012
- James N. Brawner, Dinner, Dancing and Tennis, Anyone?, Mathematics Magazine, Vol. 73, No 1 (2000).
- M. A. Brodie, Avoiding your spouse at a party leads to war, Math. Mag., 75 (2002), 203-208.
- Davi B. Costa, Bogdan A. Dobrescu, and Patrick J. Fox, Chiral Abelian gauge theories with few fermions, arXiv:2001.11991 [hep-ph], 2020.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, Avoiding your spouse at a bridge party, Math. Mag., 74 (2001), 33-41.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
Crossrefs
See A289191 for when rotational symmetries of the tiles are taken into account. - Marko Riedel, Jun 28 2017
Cf. A165968, number of pairings of 2n things disjoint to a given pairing, and containing a given pair not in the given pairing. It is given by a(n)/(2n-2). - Lewis Mammel (l_mammel(AT)att.net), Oct 07 2009
Programs
-
Haskell
a053871 n = a053871_list !! n a053871_list = 1 : 0 : zipWith (*) [2,4..] (zipWith (+) a053871_list $ tail a053871_list) -- Reinhard Zumkeller, Mar 07 2012
-
Maple
f:= gfun:-rectoproc({a(0) = 1, a(1) = 0, a(n) = 2*(n - 1)*(a(n - 1) + a(n - 2))},a(n),remember): map(f, [$0..30]); # Robert Israel, May 10 2016
-
Mathematica
RecurrenceTable[{a[0]==1,a[1]==0,a[n]==2(n-1)(a[n-1]+a[n-2])}, a[n],{n,20}] (* Harvey P. Dale, Sep 15 2011 *) CoefficientList[Assuming[{Element[x, Reals], x>0}, Series[Sqrt[Pi/2] * (I + Erfi[Sqrt[(1+1/x)/2]]) / (E^((1+x)/(2*x)) * Sqrt[x*(x+1)]), {x, 0, 20}]], x] (* Vaclav Kotesovec, Feb 15 2015 *) Range[0, 20]! CoefficientList[Series[1/(Exp[x] Sqrt[1 - 2 x]), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 15 2017 *) Table[(-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *) Table[I (-1)^n HypergeometricU[1/2, 3/2 + n, -1/2]/Sqrt[2], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
-
PARI
a(n)=(-1)^(n+1)*sum(k=0,n,(-1)^k*binomial(n,k)*prod(i=0,k,2*i-1))
Formula
E.g.f.: 1/(exp(x)*sqrt(1-2x)).
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n, k)*(2*k-1)!!. - Benoit Cloitre, May 01 2003; corrected by David Fioramonti, May 17 2016
a(n) = Integral_{x>=0} (x-1)^n * (exp(-x/2)/sqrt(2*Pi*x)) dt. - Paul Barry, Apr 12 2010
Conjectured g.f.: T(0)/(1+x), where T(k) = 1 - x*(k+1)/(x*(k+1) - (1+x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) ~ 2^(n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Mar 11 2014
G.f.: Sum_{k>=0} (2*k - 1)!!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
Conjecture: if m == n (mod q) for q odd, then (-1)^m*a(m) == (-1)^n*a(n) (mod q). - Harry Richman, Aug 29 2023
Extensions
More terms from James Sellers, Apr 08 2000
Comments