cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A340270 a(n) = (n')^A054054(n), where n' is the number resulting from removing the rightmost occurrence of the smallest digit of n, A054054(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 9, 16, 25, 36, 49, 64, 81, 1, 3, 9, 27, 64, 125, 216, 343, 512, 729, 1, 4, 16, 64, 256, 625, 1296, 2401, 4096, 6561, 1, 5, 25, 125, 625, 3125, 7776, 16807, 32768, 59049, 1
Offset: 1

Views

Author

W. Edwin Clark, Jan 02 2021

Keywords

Comments

Suggested by Eric Angelini's posting to Math-Fun mailing list, Dec 29 2020.

Examples

			a(201) = 21^0 = 1, a(21) = 2^1 = 2, a(232) = 23^2 = 529.
		

Programs

  • Maple
    leastdigit:=proc(n)
    min(convert(n,base,10));
    end:
    locationdigit:=proc(n,d)
    local L,i;
    L:=convert(n,base,10);
    for i from 1 to nops(L) do
    if d = L[i] then return (nops(L)+1-i); fi;
    od:
    end:
    cutout:=proc(X,i) [seq(X[j],j=1..i-1),seq(X[j],j=i+1..nops(X))]; end:
    ToNum:=proc(X)
    add(X[i]*10^(nops(X)-i),i=1..nops(X));
    end:
    removeleastdigit:=proc(n)
    local i,X;
    i:=locationdigit(n,leastdigit(n));
    X:=ListTools:-Reverse(convert(n,base,10));
    ToNum(cutout(X,i));
    end proc:
    a:=proc(n)
    removeleastdigit(n)^leastdigit(n);
    end:
  • PARI
    apply( {A340270(n,m=vecmin(n=digits(n)))=#n>1&& forstep( i=#n,1,-1, n[i]==m && return(fromdigits(n[^i])^m))}, [1..99]) \\ M. F. Hasler, Jan 03 2021
  • Python
    def A340270(n): return A340184(n)**int(min(str(n)))
    print([A340270(n) for n in range(1, 61)]) # Michael S. Branicky, Jan 03 2021
    

Extensions

Changed definition as suggested by M. F. Hasler

A007954 Product of decimal digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Moebius transform of A093811(n). a(n) = A093811(n) * A008683(n), where operation * denotes Dirichlet convolution, namely b(n) * c(n) = Sum_{d|n} b(d) * c(n/d). Simultaneously holds Dirichlet multiplication: a(n) * A000012(n) = A093811(n). - Jaroslav Krizek, Mar 22 2009
Apart from the 0's, all terms are in A002473. Further, for all m in A002473 there is some n such that a(n) = m, see A096867. - Charles R Greathouse IV, Sep 29 2013
a(n) = 0 asymptotically almost surely, namely for all n except for the set of numbers without digit '0'; this set is of density zero, since it is less and less probable to have no '0' as the number of digits of n grows. (See also A054054.) - M. F. Hasler, Oct 11 2015

Crossrefs

Cf. A031347 (different from A035930), A007953, A007602, A010888, A093811, A008683, A000012, A061076 (partial sums), A230099.
Cf. A051802 (ignoring zeros).

Programs

  • Haskell
    a007954 n | n < 10 = n
              | otherwise = m * a007954 n' where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Oct 26 2012, Mar 14 2011
    
  • Magma
    [0] cat [&*Intseq(n): n in [1..110]]; // Vincenzo Librandi, Jan 03 2020
    
  • Maple
    A007954 := proc(n::integer)
        if n = 0 then
            0;
        else
            mul( d,d=convert(n,base,10)) ;
        end if;
    end proc: # R. J. Mathar, Oct 02 2019
  • Mathematica
    Array[Times @@ IntegerDigits@ # &, 108, 0] (* Robert G. Wilson v, Mar 15 2011 *)
  • PARI
    A007954(n)= { local(resul = n % 10); n \= 10; while( n > 0, resul *= n %10; n \= 10; ); return(resul); } \\ R. J. Mathar, May 23 2006, edited by M. F. Hasler, Apr 23 2015
    
  • PARI
    A007954(n)=prod(i=1,#n=Vecsmall(Str(n)),n[i]-48) \\ (...eval(Vec(...)),n[i]) is about 50% slower; (...digits(n)...) about 6% slower. \\ M. F. Hasler, Dec 06 2009
    
  • PARI
    a(n)=if(n,factorback(digits(n)),0) \\ Charles R Greathouse IV, Apr 14 2020
    
  • Python
    from math import prod
    def a(n): return prod(map(int, str(n)))
    print([a(n) for n in range(108)]) # Michael S. Branicky, Jan 16 2022
  • Scala
    (0 to 99).map(.toString.toCharArray.map( - 48).scanRight(1)( * ).head) // Alonso del Arte, Apr 14 2020
    

Formula

A000035(a(A014261(n))) = 1. - Reinhard Zumkeller, Nov 30 2007
a(n) = abs(A187844(n)). - Reinhard Zumkeller, Mar 14 2011
a(n) > 0 if and only if A054054(n) > 0. a(n) = d in {1, ..., 9} if n = (10^k - 1)/9 + (d - 1)*10^m = A002275(k) + (d - 1)*A011557(m) for some k > m >= 0. The statement holds with "if and only if" for d in {1, 2, 3, 5, 7}. For d = 4, 6, 8 or 9, one has a(n) = d if n = (10^k - 1)/9 + (a - 1)*10^m + (b - 1)*10^p with integers k > m > p >= 0 and a, b > 0 such that d = a*b. - M. F. Hasler, Oct 11 2015
From Robert Israel, May 17 2016: (Start)
G.f.: Sum_{n >= 0} Product_{j = 0..n} Sum_{k = 1..9} k*x^(k*10^j).
G.f. satisfies A(x) = (x + 2*x^2 + ... + 9*x^9)*(1 + A(x^10)). (End)
a(n) <= 9^(1 + log_10(n/9)). - Lucas A. Brown, Jun 22 2023

Extensions

Error in term 25 corrected, Nov 15 1995

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A011540 Numbers that contain a digit 0.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302
Offset: 1

Views

Author

Keywords

Comments

Complement of A052382.
A168046(a(n)) = 0; A054054(a(n)) = 0; A055640(a(n)) = 0 for n = 1 and A055640(a(n)) > 0 for n > 1; A055641(a(n)) > 0; subsequence of A188643. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011; corrected by Hieronymus Fischer, Jan 13 2013
A067898(a(n)) > 0. - Reinhard Zumkeller, May 04 2012; corrected by Hieronymus Fischer, Jan 13 2013
From Hieronymus Fischer, Jan 13 2013, May 28 2014; edited by M. F. Hasler; edited by Hieronymus Fischer, Dec 27 2018: (Start)
Zerofree floor: The greatest zerofree number < a(n) is A052382(a(n) + 1 - n).
The greatest zero-containing number (i.e., non-zerofree number, or term of this sequence) less than a given zerofree number A052382(n) is a(A052382(n) + 1 - n).
The ratio n/(a(n) + 1) indicates the relative proportion of zero-containing numbers less than or equal to a(n) compared to all numbers less than or equal to a(n). Since Lim_{n -> infinity} a(n)/n = 1, this can be expressed as "Almost all numbers contain a 0" (in a slightly informal manner).
As an example, for n = 10^100, n/(a(n) + 1) = 0.9999701184..., i.e., 99.997...% of all numbers between 0 and 10^100 contain a zero digit. Only the tiny proportion of 0.0000298816... (less than 0.003%) contain no zero digit. This is in contrast to the behavior for small indices, where the relative portion of numbers that contain no zero digit is significant: for n = 10^3 and even n = 10^7, the proportion of numbers less than or equal to n that contain no zero digit exceeds 81% and 53%, respectively.
Inversion: Given a number z that contains a zero digit, the index n for which a(n) = z is n = (z+1)*probability that a randomly chosen number k from the range 0..z contains a zero digit.
Example 1: z = 10; the probability that a randomly chosen number less than or equal to 10 contains no zero digit is 9/11. The probability that it contains a zero digit is p = 2/11. Thus, n = (z+1)*p = 2 and a(2) = 10.
Example 2: z = 10^6; the probability that a randomly chosen number with m > 1 digits contains no zero digit is (9/10)^(m-1). For m = 1 the probability is 9/10. The probability that a randomly chosen number with 1..m digits contains no zero digit is q = (9/10)*10/(10^m+1) + Sum_{i = 2..m} (9/10)^(i-1)*(10^i - 10^(i-1))/(10^m+1) = (72 + 81*(9^(m-1) - 1))/(8*(10^m+1)). Hence, the probability that the chosen number with 1..m digits contains a zero digit is p = 1 - q = (8*10^m - 9*9^m + 17)/(8*(10^m + 1)). Thus, p = 402131/1000001 (for z = 10^6) and so n = (z+1)*p = 402131, which implies a(402131) = 10^6.
The number of terms z such that k*10^m <= z < (k+1)*10^m is 10^m - 9^m, where 1 <= k < 10 and m >= 0.
The number of terms z such that 10^m <= z < 10^(m+1) is 9*(10^m - 9^m), where m >= 0.
The number of terms z <= 10^m is (8*10^m - 9*9^m + 17)/8 where m>=1 (cf. A217094).
Infinitely many terms are primes, and most primes are zero-containing numbers. Sketch of a proof: The number of zero-containing numbers less than or equal to a(n) is n. Hence there are a(n) + 1 - n zerofree numbers less than or equal to a(n). From the asymptotic behavior of a(n) (see formula section) it follows a(n) + 1 - n < (5/4)*n^log_10(9) for sufficiently large n. By the prime number theorem we have for each fixed d > 0 the relation pi(n) [number of primes less than or equal to n] > (1 - d/4)*(n/log(n)) for sufficiently large n. Thus, for the number of primes less than or equal to a(n) which contain a zero digit [hereafter denoted as P_0(a(n))] we have P_0(a(n)) > pi(a(n)) - (a(n) + 1 - n) > (1 - d/4)*a(n)/log(a(n)) - (5/4)*n^log_10(9) > (1-d/4)*n/log(n) - (5/4)*n^log_10(9) = (1-d/4)*n/log(n) * (1 - (5/4)*(1/(1-d/4))*(1/n) * n^(log_10(9))*log(n)) > (1-d/2)*n/log(n) for sufficiently large n. Because of a(n) = n + o(n) this also implies P_0(a(n)) > (1 - d)*a(n)/log(a(n)) for sufficiently large n. Thus, the proportion of primes less than or equal to a(n) which contain a zero digit compared to the total number of primes less than or equal to a(n) is arbitrarily near to 1 for sufficiently large n.
Sequence inversion:
Given a term m > 0, the index n such that a(n) = m can be calculated with the following procedure: Define k := floor(log_10(m)) and i := digit position of the leftmost '0' in m counted from the right (starting with 0), then:
A011540_inverse(m) = 2 + m mod 10^i + Sum_{j = 1..k} floor((m - 1 - m mod 10^i)/10^j)*9^(j-1) [see PROG section for an implementation in Smalltalk].
Example: m = 905, k = 2, i = 1, A011540_inverse(905) = 2 + 905 mod 10 + floor((905 - 1 - 905 mod 10)/10)*1 + floor((905 - 1 - 905 mod 10)/100)*9 = 2 + 5 + floor(899/10)*1 + floor(899/100)*9 = 2 + 5 + 89*1 + 8*9 = 168.
(End)
For the number of k-digit numbers containing the digit '0', see A229127. - Jon E. Schoenfield, Sep 14 2013
The above "sketch of proof" only compares the relative densities, and since the density of this sequence is 1, the result is "obvious". But the nontrivial part is that there is no correlation between the absence of a digit '0' and primality of the number (cf. A038618). Indeed, consider the set S defined to be the set of primes with all digits '0' replaced by the smallest possible nonzero digit while avoiding duplicates. Having exactly the same density as the set of primes, the argument of the proof applies in the same way and leads to the same conclusion for the number of zero-containing terms; however, there is none in the set S. - M. F. Hasler, Oct 11 2015, example added Feb 11 2019

Examples

			a(10)      = 90.
a(100)     = 540.
a(10^3)    = 4005.
a(10^4)    = 30501.
a(10^5)    = 253503.
a(10^6)    = 2165031.
a(10^7)    = 20163807
a(10^8)    = 182915091.
a(10^9)    = 1688534028.
a(10^10)   = 15749319096.
a(10^20)   = 114131439770460123393.
a(10^50)   = 10057979971082351274741...89870962249 = 1.0057979971082...*10^50
a(10^100)  = 10000298815737485...786424499 = 1.0000298815737...*10^100.
a(10^1000) = 1...(45 zeros)...196635515818798306...4244999 (1001 digits), using recursive calculation. - _Hieronymus Fischer_, Jan 13 2013
		

Crossrefs

Programs

  • Haskell
    a011540 n = a011540_list !! (n-1)
    a011540_list = filter ((== 0) . a168046) [0..]
    -- Reinhard Zumkeller, Apr 07 2011
    
  • Magma
    [0] cat [ n: n in [0..350] | 0 in Intseq(n) ]; // Vincenzo Librandi, Oct 12 2015
    
  • Mathematica
    Select[Range[0, 299], DigitCount[#, 10, 0] > 0 &] (* Alonso del Arte, Mar 10 2011 *)
    Select[Range[0, 299], Times@@IntegerDigits[#] == 0 &] (* Alonso del Arte, Aug 29 2014 *)
  • PARI
    is(n)=!n||!vecmin(digits(n)) \\ M. F. Hasler, Feb 28 2018, replacing an earlier version from Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    A011540(n)=my(m=log(n+.5)\log(10)+1, f(m)=n-10^m+(9*9^m-17)/8, j=(sign(f(m)+1)+1)\2+m-1, c=[f(j)], k=1); while(c[k]>0,c=concat(c,c[k] % (10^(j-k+1) - 9^(j-k+1)) - 10^(j-k));k++); k>1&&k--||n>1||return(0); c[k]%(10^(j-k+1) - 9^(j-k+1)) + sum(i=1,k, (c[i]\(10^(j-i+1) - 9^(j-i+1)) + 1)*10^(j-i+1)) \\ Uses the "Direct calculation" formula given by H. Fischer. - M. F. Hasler, Oct 11 2015
    
  • Python
    A011540_list = [n for n in range(10**3) if '0' in str(n)] # Chai Wah Wu, Mar 26 2021
  • Smalltalk
    A011540
    "Calculates the n-th number with zero digits recursively - not optimized"
    | n j m b d p r |
    n := self.
    n < 2 ifTrue: [^r := 0].
    m := (n integerFloorLog: 10) + 1.
    j := (n + 1 - ((10 raisedToInteger: m) - (((9 raisedToInteger: (m + 1)) - 17) // 8))) sign + 1 // 2 + m - 1.
    d := (10 raisedToInteger: j) - (9 raisedToInteger: j).
    b := ((10 raisedToInteger: j) - (((9 raisedToInteger: (j + 1)) - 17) // 8)).
    (((n - b) \\ d > (10 raisedToInteger: (j - 1))) and: [n >= 19])
    ifTrue:
    [p := (((n - b) \\ d + b - d) A011540)].
    (n - b) \\ d > (10 raisedToInteger: (j - 1))
    ifFalse: [p := (n - b) \\ d].
    r := (((n - b) // d + 1) * (10 raisedToInteger: j)) + p.
    ^r "Hieronymus Fischer, Jan 13 2013"
    
  • Smalltalk
    A011540_inverse
    "Version 1: Answers the index n such that A011540(n) = m, where m is the receiver.
    Usage: m A011540_inverse
    Answer: n"
    | m p q s r d |
    m := self.
    m < 10 ifTrue: [^1].
    p := q := 1.
    [p < m] whileTrue:
    [d := m // p \\ 10.
    d = 0 ifTrue: [q := p].
    p := 10 * p].
    r := m \\ q.
    s := r + 2.
    p := 10.
    q := 1.
    m := m - r - 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := 10 * p.
    q := 9 * q].
    ^s
    "Hieronymus Fischer, May 28 2014"
    
  • Smalltalk
    A011540_inverse
    "Version 2: Answers the index n such that A011540(n) = m, where m is the receiver.
    Uses A052382_inverse from A052382.
    Usage: m A011540_inverse
    Answer: n"
    | m p q d |
    m := self.
    m < 10 ifTrue: [^1].
    p := q := 1.
    [p < m] whileTrue:
    [d := m // p \\ 10.
    d = 0 ifTrue: [q := p].
    p := 10 * p].
    ^m + 1 - (m - 1 - (m \\ q)) A052382_inverse
    "Hieronymus Fischer, May 28 2014"
    

Formula

From Hieronymus Fischer, Jan 13 2013: (Start)
Inequalities:
a(n) <= 10*(n - 1), equality holds for 1 <= n <= 11.
a(n) <= 9*n, for n <> 11.
a(n) < n + 10 * n^log_10(9).
a(n) < n + 2 * n^log_10(9), for n > 6*10^8.
a(n) > n + 9^log_10(9)/8 * n^log_10(9).
a(n) < A043489(n), for n > 10.
Iterative calculation:
a(n+1) = a(n) + 1 + 9*sign(A007954(a(n)+1)).
Recursive calculation (for n > 1):
Set m := floor(log_10(n)) + 1), j := floor(sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, d := 10^j - 9^j, b := (8*10^j - 9*9^j + 17)/8, and determine r(n) as follows:
Case 1: r(n) = a(b - d + (n - b) mod d), if (n - b) mod d > 10^(j-1) and n >= 19
Case 2: r(n) = (n - b) mod d, if (n - b) mod d <= 10^(j-1).
Then a(n) = (floor((n - b)/d) + 1)*10^j + r(n).
Direct calculation (for n>1):
Set m := floor(log_10(n)) + 1), j := floor((sign(n+1 - (8*10^m - 9*9^m + 17)/8) + 1)/2) + m - 1, and determine k and c(i) as follows:
c(1) = n - (8*10^j - 9*9^j + 17)/8, then define successively for i = 1, 2, ...,
c(i+1) = (c(i) mod (10^(j-i+1) - 9^(j-i+1))) - 10^(j-i) while this value is > 0, and set k := i for the last such index for which c(i) > 0 (in any case k is k<=j).
Then a(n) = c(k) mod (10^(j-k+1) - 9^(j-k+1)) + sum_{i=1..k}(floor(c(i)/(10^(j-i+1) - 9^(j-i+1))) + 1)*10^(j-i+1).
Asymptotic behavior:
a(n) = n + O(n^log_10(9)) = n*(1+ O(1/n^0.04575749056...)).
lim a(n)/n = 1 for n -> infinity.
lim inf (a(n) - n)/n^log_10(9) = 9^log_10(9)/8 = 1.017393081085670008926619124438...
lim sup (a(n) - n)/n^log_10(9) = 9/8 = 1.125.
Sums:
Sum_{n >= 2} (-1)^n/a(n) = 0.0693489578....
Sum_{n >= 2} 1/a(n)^2 = 0.0179656962...
Sum_{n >= 2} 1/a(n) diverges, because of a(n) < 10*n.
Sum_{n >= 1} a(n)/n^2 diverges too.
Sum_{n >= 2} 1/a(n)^2 + Sum_{n >= 1} 1/A052382(n)^2 = Pi^2/6.
Generating function:
g(x) = Sum_{k >= 1} g_k(x), where the terms g_k(x) obey the following recurrence relation:
g_k(x) = 10^k*x^b(k) * (1 - 10x^(9d(k)) + 9x^(10d(k)))/((1-x^d(k))(1-x)) + (x*x^b(k) * (1 - 10^(k-1)*x^(10^(k-1)-1) + (10^(k-1)-1)*x^10^(k-1))/((1-x)^2) + g_(k-1)(x)*x^d(k)) * (1-x^(9d(k)))/(1-x^d(k)),
where b(k) := 2 + 10^k - 9^k - (9^k-1)/8,
d(k) := 10^k - 9^k, and g_0(x) = 0.
Explicit representation of g_k(x):
g_k(x) = (10^k*x^b(k)*(1 - 10x^(9d(k)) + 9x^(10d(k)))/(1-x^d(k)) + sum_{j=1..k-1} ((10^j*x^b(j) * (1 - 10x^(9d(j)) + 9x^(10d(j)))/(1-x^d(j)) + x^(b(j)-10^j+1) * (1 - 10^j*x^(10^j-1) + (10^j-1)*x^10^j)/(1-x)) * Product_{i=j+1..k} x^d(i)*(1-x^(9d(i)))/(1-x^d(i)))/(1-x).
A summation term g_k(x) of the g.f. represents all the sequence terms >= 10^k and < 10^(k+1).
Example 1: g_1(x) = 10*x^2*(1 - 10x^9 + 9x^10)/(1-x)^2 represents the g.f. fragment 10x^2 + 20x^3 + ... + 90x^10 and so generates the terms a(2)=10 ... a(10)=90.
Example 2: g_2(x) = 10^2*x^11*(1 - 10x^(9*19) + 9x^(10*19))/((1-x)(1-x^19)) + 10*x^21 * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19)) + x^11*x * (1 - 10x^9 + 9x^10)/((1-x)^2) * (1-x^(9*19))/(1-x^19) represents the g.f. fragment 100x^11 + 101x^12 + ... + 109x^20 + 110x^21 + 120x^22 + ... + 190x^29 + 200x^30 + 201x^31 + ... + 210x^40 + ... + 990x^181 and so generates the terms a(11) = 100 ... a(181) = 990.
(End)
From Hieronymus Fischer, Feb 12 2019: (Start)
The number C(n) of zero-containing numbers <= n (counting function) is given by C(n) = A011540_inverse(n), if n is a zero-containing number, and C(n) = A011540_inverse(A052382(a(n) + 1 - n)), if n is a zerofree number.
Upper bound:
C(n) <= n+1-((9*n+1)^d-1)/8.
Lower bound:
C(n) > n+1-((10*n+1)^d-1)/8
where d = log_10(9) = 0.95424250943932...
(see A324160).
(End)

Extensions

Edited by M. F. Hasler, Oct 11 2015

A054055 Largest digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 2, 3, 4
Offset: 0

Views

Author

Henry Bottomley, Apr 29 2000

Keywords

Comments

A095815(n) = n + a(n). - Reinhard Zumkeller, Aug 23 2011
a(A007088(n)) = 1, n > 0; a(A136399(n)) > 1. - Reinhard Zumkeller, Apr 25 2012
a(n) = 9 for almost all n. Sum_{n < x} a(n) = 9x + O(.956^x). - Charles R Greathouse IV, Oct 02 2013

Examples

			a(12)=2 because 1 < 2.
		

Crossrefs

Cf. A054054.

Programs

  • Haskell
    a054055 = f 0 where
       f m x | x <= 9 = max m x
             | otherwise = f (max m d) x' where (x',d) = divMod x 10
    -- Reinhard Zumkeller, Jun 20 2012, May 14 2011
    
  • Magma
    [n eq 0 select 0 else Maximum(Intseq(n)): n in [0..104]]; // Bruno Berselli, Aug 24 2011
    
  • Maple
    [seq(max(convert(n,base,10)),n=0..120)];
  • Mathematica
    f[n_] := Sort[IntegerDigits[n]][[-1]]; Array[f, 105, 0] (* Alonso del Arte, May 14 2011 *) (* and revised by Robert G. Wilson v, Aug 24 2011 *)
    Max/@IntegerDigits[Range[0,110]] (* Harvey P. Dale, Apr 17 2016 *)
  • PARI
    a(n)=vecmax(eval(Vec(Str(n)))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=vecmax(digits(n)) \\ Charles R Greathouse IV, Oct 02 2013
    
  • Python
    def A054055(n): return max(int(d) for d in str(n)) # Chai Wah Wu, Jun 06 2022

A087097 Lunar primes (formerly called dismal primes) (cf. A087062).

Original entry on oeis.org

19, 29, 39, 49, 59, 69, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 209, 219, 309, 319, 329, 409, 419, 429, 439, 509, 519, 529, 539, 549, 609, 619, 629, 639, 649, 659, 709, 719, 729, 739, 749, 759, 769, 809, 819, 829, 839, 849, 859, 869, 879, 901, 902, 903, 904, 905, 906, 907, 908, 909, 912, 913, 914, 915, 916, 917, 918, 919, 923, 924, 925, 926, 927, 928, 929, 934, 935, 936, 937, 938, 939, 945, 946, 947, 948, 949, 956, 957, 958, 959, 967, 968, 969, 978, 979, 989
Offset: 1

Views

Author

Marc LeBrun, Oct 20 2003

Keywords

Comments

9 is the multiplicative unit. A number is a lunar prime if it is not a lunar product (see A087062 for definition) r*s where neither r nor s is 9.
All lunar primes must contain a 9, so this is a subsequence of A011539.
Also, numbers k such that the lunar sum of the lunar prime divisors of k is k. - N. J. A. Sloane, Aug 23 2010
We have changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing. - N. J. A. Sloane, Aug 06 2014
(Lunar) composite numbers are not necessarily a product of primes. (For example 1 = 1*x for any x in {1, ..., 9} is not a prime but can't be written as the product of primes.) Therefore, to establish primality, it is not sufficient to consider only products of primes; one has to consider possible products of composite numbers as well. - M. F. Hasler, Nov 16 2018

Examples

			8 is not prime since 8 = 8*8. 9 is not prime since it is the multiplicative unit. 10 is not prime since 10 = 10*8. Thus 19 is the smallest prime.
		

Crossrefs

Programs

  • PARI
    A87097=select( is_A087097(n)={my(d); if( n<100, n>88||(n%10==9&&n>9), vecmax(d=digits(n))<9, 0, #d<5, vecmin(d)A087062(m,k)==n&&return))))}, [1..999]) \\ M. F. Hasler, Nov 16 2018

Formula

The set { m in A011539 | 9A054054(m) < min(A000030(m),A010879(m)) } (9ish numbers A011539 with 2 digits or such that the smallest digit is strictly smaller than the first and the last digit) is equal to this sequence up to a(1656) = 10099. The next larger 9ish number 10109 is also in that set but is the lunar square of 109, thus not in this sequence of primes. - M. F. Hasler, Nov 16 2018

A037904 Greatest digit of n - least digit of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9
Offset: 1

Views

Author

Keywords

Comments

a(n) = A054055(n)-A054054(n); a(A010785(n)) = 0; for k>0: a(n) = a(n*10^k + A000030(n)) = a(n*10^k + A010879(n)) = a(n*10^k + A054054(n)) = a(n*10^k + A054055(n)) . - Reinhard Zumkeller, Dec 14 2007; corrected by David Wasserman, May 21 2008

Crossrefs

Programs

  • Haskell
    a037904 = f 9 0 where
       f u v 0 = v - u
       f u v z = f (min u d) (max v d) z' where (z', d) = divMod z 10
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    f:= n -> (max-min)(convert(n,base,10)):
    map(f, [$1..1000]); # Robert Israel, Jul 07 2016
  • Mathematica
    f[n_] := Block[{d = IntegerDigits[n]}, Max[d] - Min[d]]; Table[ f[n], {n, 1, 15}]
  • PARI
    a(n)=my(d=digits(n)); vecmax(d)-vecmin(d) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    def A037904(n): return int(max(s:=str(n)))-int(min(s)) # Chai Wah Wu, Nov 10 2023

Extensions

Incorrect comments deleted by Robert Israel, Jul 07 2016

A284069 Numbers whose smallest decimal digit is 8.

Original entry on oeis.org

8, 88, 89, 98, 888, 889, 898, 899, 988, 989, 998, 8888, 8889, 8898, 8899, 8988, 8989, 8998, 8999, 9888, 9889, 9898, 9899, 9988, 9989, 9998, 88888, 88889, 88898, 88899, 88988, 88989, 88998, 88999, 89888, 89889, 89898, 89899, 89988, 89989, 89998, 89999, 98888
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2017

Keywords

Comments

Numbers n such that A054054(n) = 8.
Prime terms are in A020472. - Corrected by Robert Israel, Apr 05 2017

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), this sequence (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 8]
    
  • Maple
    F:= proc(d) local r; # to get all terms with d digits
    r:= 8*(10^d-1)/9;
    op(sort(convert(map(t -> r + add(10^(j-1),j=t), combinat:-powerset(d) minus {{$1..d}}),list)))
    end proc:
    map(F, [$1..5]); # Robert Israel, Apr 05 2017
  • Mathematica
    Flatten@ Table[ Most[ FromDigits /@ Tuples[{8,9}, k]], {k,5}] (* Giovanni Resta, Mar 24 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 8; \\ Michel Marcus, Mar 25 2017
    
  • Python
    print([n for n in range(8, 10**6) if min(str(n))=='8']) # Indranil Ghosh, Apr 06 2017

Formula

From Robert Israel, Apr 05 2017: (Start)
a(2*j+2^(m+1)-m-3) = 10*a(j+2^m-m-1)+8 for j=1..2^m-1.
a(2*j+2^(m+1)-m-2) = 10*a(j+2^m-m-1)+9 for j=1..2^m-1.
a(2^(m+1)-m-2) = 10^m-2. (End)

A284062 Numbers whose smallest decimal digit is 1.

Original entry on oeis.org

1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers k such that A054054(k) = 1.
Prime terms are in A106101.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), this sequence (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 1]
    
  • Mathematica
    Select[Range[300], Min[IntegerDigits[#]]==1 &] (* Indranil Ghosh, Mar 19 2017 *)
  • PARI
    for(n=1, 300, if(vecmin(digits(n))==1, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 301) if min(digits(n)[1:])==1]) # Indranil Ghosh, Mar 19 2017

A284064 Numbers whose smallest decimal digit is 3.

Original entry on oeis.org

3, 33, 34, 35, 36, 37, 38, 39, 43, 53, 63, 73, 83, 93, 333, 334, 335, 336, 337, 338, 339, 343, 344, 345, 346, 347, 348, 349, 353, 354, 355, 356, 357, 358, 359, 363, 364, 365, 366, 367, 368, 369, 373, 374, 375, 376, 377, 378, 379, 383, 384, 385, 386, 387, 388
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054054(n) = 3.
Prime terms are in A106103.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), this sequence (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 3]
    
  • Maple
    L[1]:= {3}: G[1]:= {$4..9}:
    for n from 2 to 3 do L[n]:= map(t -> seq(10*t+j,j=3..9), L[n-1]) union map(t -> 10*t+3, G[n-1]);
      G[n]:= map(t -> seq(10*t+j,j=4..9), G[n-1])
    od:
    seq(op(sort(convert(L[n],list))),n=1..3); # Robert Israel, Mar 27 2017
  • Mathematica
    With[{k = 3}, Select[Range@ 388, And[Total@ Take[#, k] == 0, #[[k + 1]] > 0] &@ RotateRight@ DigitCount@ # &]] (* Michael De Vlieger, Mar 20 2017 *) (* or *)
    Select[Range[10000], Min[IntegerDigits[#]] == 3 &] (* faster, simpler, Giovanni Resta, Mar 22 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 3; \\ Michel Marcus, Mar 25 2017
Showing 1-10 of 54 results. Next