A054109 a(n) = T(2*n+1, n), array T as in A054106.
1, 2, 8, 27, 99, 363, 1353, 5082, 19228, 73150, 279566, 1072512, 4127788, 15930512, 61628248, 238911947, 927891163, 3609676487, 14062955413, 54860308997, 214268628223, 837780853637, 3278934510163, 12844867331387
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a := n -> abs(add(binomial(-j-1, -2*j-2), j=0..n)): seq(a(n), n=0..23); # Zerinvary Lajos, Oct 03 2007 gf := ((1 - 4*x)^(-1/2) - 1)/(2*x*(x + 1)): ser := series(gf, x, 32): seq(coeff(ser, x, n), n=0..23); # Peter Luschny, Jan 18 2020
-
Mathematica
Table[FullSimplify[1/2*(-1)^(1+n) * (-1+1/Sqrt[5]-(-1)^n*Binomial[2*(2+n), 2+n] * Hypergeometric2F1[1, 5/2+n, 3+n, -4])],{n,0,20}] (* Vaclav Kotesovec, Feb 12 2014 *) Table[1/2*(-1)^(n+1)*Sum[(-1)^k*Binomial[2*k, k],{k,1,n+1}],{n,0,20}] (* Vaclav Kotesovec, Feb 12 2014 *)
-
PARI
a(n)=(1/2)*(-1)^(n+1)*sum(k=1,n+1,(-1)^k*binomial(2*k,k))
Formula
a(n-1) = (1/2)*(-1)^n*Sum_{k=1..n} (-1)^k*binomial(2k, k). - Benoit Cloitre, Nov 07 2002
Conjecture: (n+1)*a(n) + (-3*n-1)*a(n-1) + 2*(-2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 2^(2*n+3) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2k+1,k+1). - Paul Barry, Jan 17 2020
a(n) = binomial(2*n+3, n+2)*hypergeom([1, n+5/2], [n+3], -4) + (-1)^n*(5 - sqrt(5)) /10. - Peter Luschny, Jan 18 2020
Comments