cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A022844 a(n) = floor(n*Pi).

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, 157, 160, 163, 166, 169, 172, 175, 179, 182, 185, 188, 191, 194
Offset: 0

Views

Author

Keywords

Comments

Beatty sequence for Pi.
Differs from A127451 first at a(57). - L. Edson Jeffery, Dec 01 2013
These are the nonnegative integers m satisfying sin(m)*sin(m+1) <= 0. In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying sin(m*x)*sin((m+1)*x) <= 0, where x = Pi/r. Thus the numbers m satisfying sin(m*x)*sin((m+1)*x) > 0 form the Beatty sequence of r/(1-r). - Clark Kimberling, Aug 21 2014
This can also be stated in terms of the tangent function. These are the nonnegative integers m such that tan(m/2)*tan(m/2+1/2) <= 0. In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying tan(m*x/2)*tan((m+1)*x/2) <= 0, where x = Pi/r. Thus the numbers m satisfying tan(m*x/2)*tan((m+1)*x/2) > 0 form the Beatty sequence of r/(1-r). - Clark Kimberling, Aug 22 2014

Examples

			a(7)=21 because 7*Pi=21.9911... and a(8)=25 because 8*Pi=25.1327.... a(100000)=314159 because Pi=3.141592...
		

Crossrefs

First differences give A063438.

Programs

  • Magma
    R:=RieldField(10); [Floor(n*Pi(R)): n in [0..80]]; // G. C. Greubel, Sep 28 2018
  • Maple
    a:=n->floor(n*Pi): seq(a(n),n=0..70); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    Floor[Pi Range[0,200]] (* Harvey P. Dale, Aug 27 2024 *)
  • PARI
    vector(80, n, n--; floor(n*Pi)) \\ G. C. Greubel, Sep 28 2018
    

Formula

a(n)/n converges to Pi because |a(n)/n - Pi| = |a(n) - n*Pi|/n < 1/n. - Hieronymus Fischer, Jan 22 2006

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Aug 27 2024

A108591 Self-inverse integer permutation induced by Beatty sequences for Pi and Pi/(Pi-1).

Original entry on oeis.org

3, 6, 1, 9, 12, 2, 15, 18, 4, 21, 25, 5, 28, 31, 7, 34, 37, 8, 40, 43, 10, 47, 50, 53, 11, 56, 59, 13, 62, 65, 14, 69, 72, 16, 75, 78, 17, 81, 84, 19, 87, 91, 20, 94, 97, 100, 22, 103, 106, 23, 109, 113, 24, 116, 119, 26, 122, 125, 27, 128, 131, 29, 135, 138, 30, 141, 144
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2005

Keywords

Crossrefs

Formula

a(A022844(n))=A054386(n) and a(A054386(n))=A022844(n).

Extensions

a(53)/a(54) joined by Georg Fischer, May 24 2022

A108586 Floor(2*n*Pi/(2*Pi-1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2005

Keywords

Comments

Beatty sequence for 2*Pi/(2*Pi-1); complement of A038130; not the same as A108120: a(37)=44 <> A108120(37)=43.

Crossrefs

Programs

  • Mathematica
    With[{c=2Pi},Floor[(c*Range[80])/(c-1)]] (* Harvey P. Dale, Apr 21 2024 *)

A108589 a(n) = floor(n*Pi/(Pi-2)).

Original entry on oeis.org

2, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30, 33, 35, 38, 41, 44, 46, 49, 52, 55, 57, 60, 63, 66, 68, 71, 74, 77, 79, 82, 85, 88, 90, 93, 96, 99, 101, 104, 107, 110, 112, 115, 118, 121, 123, 126, 129, 132, 134, 137, 140, 143, 145, 148, 151, 154, 156, 159, 162, 165, 167
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2005

Keywords

Comments

Beatty sequence for Pi/(Pi-2); complement of A140758.

Crossrefs

Programs

  • Magma
    R:= RealField(40); [Floor(n*Pi(R)/(Pi(R)-2)): n in [1..60]]; // G. C. Greubel, Oct 21 2023
    
  • Maple
    A108589:=n->floor(n*Pi/(Pi-2)); seq(A108589(n), n=1..50); # Wesley Ivan Hurt, Apr 19 2014
  • Mathematica
    With[{c=Pi/(Pi-2)},Floor[c*Range[70]]] (* Harvey P. Dale, Apr 19 2014 *)
  • SageMath
    [floor(n*pi/(pi-2)) for n in range(1,61)] # G. C. Greubel, Oct 21 2023

A246388 Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) <= 0.

Original entry on oeis.org

3, 9, 15, 21, 28, 34, 40, 47, 53, 59, 65, 72, 78, 84, 91, 97, 103, 109, 116, 122, 128, 135, 141, 147, 153, 160, 166, 172, 179, 185, 191, 197, 204, 210, 216, 223, 229, 235, 241, 248, 254, 260, 267, 273, 279, 285, 292, 298, 304, 311, 317, 323, 329, 336, 342
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)

A115239 a(1) = floor(Pi) = 3; a(n+1) = floor(a(n)*Pi).

Original entry on oeis.org

3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, 242355211526, 761381352089, 2391950062303
Offset: 1

Views

Author

Hieronymus Fischer, Jan 17 2006

Keywords

Comments

a(n+1)/a(n) converges to Pi. Similar to sequence A085839 but with a simpler definition.
Subset of the Beatty sequence of Pi = A022844 = floor(n*Pi). Primes in this sequence include a(1) = 3, a(6) = 857, a(15) = 25541911. - Jonathan Vos Post, Jan 18 2006

Examples

			a(2) = floor(a(1)*Pi) = floor(3*Pi) = 9;
a(3) = floor(a(2)*Pi) = floor(9*Pi) = 28;
a(4) = floor(a(3)*Pi) = floor(28*Pi) = 87.
		

Crossrefs

Programs

  • Maple
    A[1]:= 3:
    for n from 2 to 50 do A[n]:= floor(Pi*A[n-1]) od:
    seq(A[i],i=1..50); # Robert Israel, Feb 07 2016
  • Mathematica
    a[1] = Floor[Pi]; a[n_] := a[n] = Floor[a[n - 1]*Pi]; Array[a, 25] (* Robert G. Wilson v, Jan 18 2006 *)
    NestList[Floor[Pi #]&,3,30] (* Harvey P. Dale, Mar 30 2012 *)

Extensions

More terms from Robert G. Wilson v, Jan 18 2006

A246389 Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) >= 0.

Original entry on oeis.org

0, 1, 2, 7, 8, 13, 14, 19, 20, 26, 27, 32, 33, 38, 39, 44, 45, 46, 51, 52, 57, 58, 63, 64, 70, 71, 76, 77, 82, 83, 88, 89, 90, 95, 96, 101, 102, 107, 108, 114, 115, 120, 121, 126, 127, 132, 133, 134, 139, 140, 145, 146, 151, 152, 158, 159, 164, 165, 170, 171
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Maple
    Digits := 100:
    isA246389 := proc(k)
        if evalf(sin(k)) >= 0 and evalf(sin(k+1)) >= 0 then
            return true ;
        else
            return false ;
        end if;
    end proc:
    A246389 := proc(n)
        option remember ;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA246389(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A246389(n),n=1..100) ; # assumes offset 1 R. J. Mathar, Jan 18 2024
  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)

A127450 Beatty sequence for 1/(e^Pi - Pi^e), complement of A127451.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102
Offset: 1

Views

Author

Robert G. Wilson v, Jan 14 2007

Keywords

Comments

Differs from A054386 at term n=122, where A054386(122)=178, A127450(122)=179. - Martin Fuller, May 10 2007

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/(Exp[Pi] - Pi^E)], {n, 70}]

Formula

a(n) = floor(n/(e^Pi - Pi^e))

Extensions

Definition corrected by N. J. A. Sloane, May 10 2007

A246390 Nonnegative integers k satisfying sin(k) <= 0 and sin(k+1) <= 0.

Original entry on oeis.org

4, 5, 10, 11, 16, 17, 22, 23, 24, 29, 30, 35, 36, 41, 42, 48, 49, 54, 55, 60, 61, 66, 67, 68, 73, 74, 79, 80, 85, 86, 92, 93, 98, 99, 104, 105, 110, 111, 112, 117, 118, 123, 124, 129, 130, 136, 137, 142, 143, 148, 149, 154, 155, 156, 161, 162, 167, 168, 173
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
    SequencePosition[Table[If[Sin[n]<=0,1,0],{n,200}],{1,1}][[;;,1]] (* Harvey P. Dale, Apr 02 2023 *)
Showing 1-9 of 9 results.