cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A327069 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
We consider a graph with one vertex and no edges to be disconnected.

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 475 227  25   1   0
		

Crossrefs

Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(1) = 1.
Column k = 1 is A327071.
Column k = 2 is A327146.
The unlabeled version (except with offset 1) is A263296.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(27) from Robert Price, May 25 2021

A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    4   3   1   0
   26  28   9   1   0
  296 490 212  25   1   0
		

Crossrefs

The unlabeled version is A259862.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
Column k = 1 is A327336.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
Cut-connectivity is A327125.
Spanning edge-connectivity is A327069.
Non-spanning edge-connectivity is A327148.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]

Extensions

a(21)-a(35) from Robert Price, May 14 2021

A327125 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    4   3   0   1
   26  28   9   0   1
  296 490 212  25   0   1
		

Crossrefs

After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021

A327114 Number of labeled simple graphs covering n vertices with cut-connectivity 1.

Original entry on oeis.org

0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

The cut-connectivity of a graph is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327126.
The unlabeled version is A052442, if we assume A052442(2) = 0.
Connected non-separable graphs are A013922.
BII-numbers for cut-connectivity 1 are A327098.
Set-systems with cut-connectivity 1 are counted by A327197.
Labeled simple graphs with vertex-connectivity 1 are A327336.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
  • PARI
    seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A001187(n) - A013922(n), if we assume A001187(1) = 0.

A327070 Number of non-connected simple labeled graphs covering n vertices.

Original entry on oeis.org

1, 0, 0, 0, 3, 40, 745, 21028, 973889, 80133088, 12523299729, 3847333778244, 2341705361100633, 2821794389863015840, 6728707109106848947081, 31769173063866390661714996, 297278309767391164611330317921
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).

Examples

			The a(4) = 3 graphs:
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
		

Crossrefs

Column k = 0 of A327149.
The unlabeled version is A327075.
The non-covering version is A327199.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]!=1&]],{n,0,5}]

Formula

a(n) = A006129(n) - A001187(n), if we assume A001187(0) = 0 and A001187(1) = 0.
Inverse binomial transform of A327199.

A327075 Number of non-connected unlabeled simple graphs covering n vertices.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 10, 35, 185, 1242, 13929, 292131, 12344252, 1032326141, 166163019475, 50671385831320, 29105332577409883, 31455744378606296280, 64032559078724993894492, 245999991257359808853560276, 1787823917424909126688749033668, 24639597815428343970034635549911427
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(6) = 10 graphs (empty columns not shown):
  {}  {12,34}  {12,35,45}     {12,34,56}
               {12,34,35,45}  {12,35,46,56}
                              {12,36,46,56}
                              {13,23,46,56}
                              {12,34,35,46,56}
                              {12,36,45,46,56}
                              {13,23,45,46,56}
                              {12,13,23,45,46,56}
                              {12,35,36,45,46,56}
                              {12,34,35,36,45,46,56}
		

Crossrefs

Column k = 0 of A327201.
The labeled version is A327070.
Disconnected graphs are A000719.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A327075(n):
        if n <= 1: return 1-n
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return b(n)-b(n-1)-sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 03 2024

Formula

a(n) = A002494(n) - A001349(n), if we assume A001349(0) = A001349(1) = 0.

Extensions

a(20)-a(21) from Chai Wah Wu, Jul 03 2024

A327336 Number of labeled simple graphs with vertex-connectivity 1.

Original entry on oeis.org

0, 0, 1, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040, 9672967865350359173180572164444160
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

Same as A327114 except a(2) = 1.
The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton.

Examples

			The a(2) = 1 through a(4) = 28 edge-sets:
  {12}  {12,13}  {12,13,14}
        {12,23}  {12,13,24}
        {13,23}  {12,13,34}
                 {12,14,23}
                 {12,14,34}
                 {12,23,24}
                 {12,23,34}
                 {12,24,34}
                 {13,14,23}
                 {13,14,24}
                 {13,23,24}
                 {13,23,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
                 {12,13,14,23}
                 {12,13,14,24}
                 {12,13,14,34}
                 {12,13,23,24}
                 {12,13,23,34}
                 {12,14,23,24}
                 {12,14,24,34}
                 {12,23,24,34}
                 {13,14,23,34}
                 {13,14,24,34}
                 {13,23,24,34}
                 {14,23,24,34}
		

Crossrefs

Column k = 1 of A327334.
The unlabeled version is A052442.
Connected non-separable graphs are A013922.
Set-systems with vertex-connectivity 1 are A327128.
Labeled simple graphs with cut-connectivity 1 are A327114.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==1&]],{n,0,4}]

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A327235 Number of unlabeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Examples

			The a(4) = 2 through a(6) = 14 edge-sets:
  {}       {}             {}
  {12,34}  {12,34}        {12,34}
           {12,35,45}     {12,34,56}
           {12,34,35,45}  {12,35,45}
                          {12,34,35,45}
                          {12,35,46,56}
                          {12,36,46,56}
                          {13,23,46,56}
                          {12,34,35,46,56}
                          {12,36,45,46,56}
                          {13,23,45,46,56}
                          {12,13,23,45,46,56}
                          {12,35,36,45,46,56}
                          {12,34,35,36,45,46,56}
		

Crossrefs

Unlabeled non-connected graphs are A000719.
Partial sums of A327075.
The labeled version is A327199.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A327235(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1
        return 1+b(n)-sum(a(i) for i in range(1,n+1)) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = 1 + A000088(n) - Sum_{i = 1..n} A001349(i).

Extensions

a(20)-a(21) from Chai Wah Wu, Jul 03 2024

A182100 The number of connected simple labeled graphs with <= n nodes.

Original entry on oeis.org

1, 2, 4, 11, 65, 974, 31744, 2069971, 267270041, 68629753650, 35171000942708, 36024807353574291, 73784587576805254665, 302228602363365451957806, 2475873310144021668263093216, 40564787336902311168400640561099
Offset: 0

Views

Author

Geoffrey Critzer, Apr 11 2012

Keywords

Examples

			From _Gus Wiseman_, Sep 03 2019: (Start)
The a(0) = 1 through a(3) = 11 edge-sets (singletons represent uncovered vertices):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

The unlabeled version is A292300(n) + 1.

Programs

  • Mathematica
    nn = 15; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Exp[x] (Log[g] + 1), {x, 0, nn}], x]

Formula

a(n) = Sum_{i=0..n} binomial(n,i)*A001187(i).
E.g.f.: exp(x)*A(x) where A(x) is e.g.f. for A001187.
a(n) = A327078(n) + n. - Gus Wiseman, Sep 03 2019
Showing 1-10 of 15 results. Next