A177938
Triangle T(n,k) = (-1)^(k+n)*A054655(n,n-k), 0<=k
1, 1, 1, 6, 5, 1, 60, 47, 12, 1, 840, 638, 179, 22, 1, 15120, 11274, 3325, 485, 35, 1, 332640, 245004, 74524, 11985, 1075, 51, 1, 8648640, 6314664, 1961470, 336049, 34300, 2086, 70, 1, 259459200, 188204400, 59354028, 10630508, 1182769, 83720
Offset: 0
Examples
[0] 1; [1] 1, 1; [2] 6, 5, 1; [3] 60, 47, 12, 1; [4] 840, 638, 179, 22, 1; [5] 15120, 11274, 3325, 485, 35, 1; [6] 332640, 245004, 74524, 11985, 1075, 51, 1; [7] 8648640, 6314664, 1961470, 336049, 34300, 2086, 70, 1; [8] 259459200, 188204400, 59354028, 10630508, 1182769, 83720, 3682, 92, 1;
Links
- Takao Komatsu, Some explicit values of a q-multiple zeta function at roots of unity, arXiv:2505.09357 [math.NT], 2025. See p. 10.
Crossrefs
Programs
-
Mathematica
p[x_, n_] = If[n == 0, 1, (n - 1)! / FunctionExpand[Beta[x + n, n]]]; Table[CoefficientList[p[x, n], x], {n, 0, 8}] // Flatten (* rewritten by Peter Luschny, Mar 22 2022 *)
Formula
Row generating function: Gamma(x+2*n)/Gamma(x+n) = Sum_{k>=0} T(n,k)*x^k.
T(n, k) = n!*(-1)^k*[x^k] hypergeom([-n, -x + n - 1], [-n], 1). - Peter Luschny, Mar 22 2022
Comments