cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A024167 a(n) = n!*(1 - 1/2 + 1/3 - ... + c/n), where c = (-1)^(n+1).

Original entry on oeis.org

1, 1, 5, 14, 94, 444, 3828, 25584, 270576, 2342880, 29400480, 312888960, 4546558080, 57424792320, 948550176000, 13869128448000, 256697973504000, 4264876094976000, 87435019510272000, 1627055289796608000, 36601063093905408000, 754132445894209536000
Offset: 1

Views

Author

Keywords

Comments

Stirling transform of (-1)^n*a(n-1) = [0, 1, -1, 5, -14, 94, ...] is A000629(n-2) = [0, 1, 2, 6, 26, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [1, 1, 5, 14, 94, ...] is A052882(n) = [1, 2, 9, 52, 375, ...]. - Michael Somos, Mar 04 2004
a(n) is the number of n-permutations that have a cycle with length greater than n/2. - Geoffrey Critzer, May 28 2009
From Jens Voß, May 07 2010: (Start)
a(4n) is divisible by 6*n + 1 for all n >= 1; the quotient of a(4*n) and 6*n+1 is A177188(n).
a(4*n+3) is divisible by 6*n + 5 for all n >= 0; the quotient of a(4*n+3) and 6*n + 5 is A177174(n). (End)

Examples

			G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> n!*(log(2) - (-1)^n*LerchPhi(-1, 1, n+1));
    seq(simplify(a(n)), n=1..20); # Peter Luschny, Dec 27 2018
  • Mathematica
    f[k_] := k (-1)^(k + 1)
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 18}]    (* A024167 signed *)
    (* Clark Kimberling, Dec 30 2011 *)
    a[ n_] := If[ n < 0, 0, n! Sum[ -(-1)^k / k, {k, n}]]; (* Michael Somos, Nov 28 2013 *)
    a[ n_] := If[ n < 0, 0, n! (PolyGamma[n + 1] - PolyGamma[(n + Mod[n, 2, 1]) / 2])]; (* Michael Somos, Nov 28 2013 *)
    a[ n_] := If[ n < 1, 0, (-1)^Quotient[n, 2] SymmetricPolynomial[ n - 1, Table[ -(-1)^k k, {k, n}]]]; (* Michael Somos, Nov 28 2013 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( log(1 + x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 02 2004 */
    
  • PARI
    x='x+O('x^33); Vec(serlaplace(log(1+x)/(1-x))) \\ Joerg Arndt, Dec 27 2018
    
  • Python
    def A():
        a, b, n = 1, 1, 2
        yield(a)
        while True:
            yield(a)
            b, a = a, a + b * n * n
            n += 1
    a = A(); print([next(a) for  in range(20)]) # _Peter Luschny, May 19 2020

Formula

E.g.f.: log(1 + x)/(1 - x). - Vladeta Jovovic, Aug 25 2002
a(n) = a(n-1) + a(n-2) * (n-1)^2, n > 1. - Michael Somos, Oct 29 2002
b(n) = n! satisfies the above recurrence with b(1) = 1, b(2) = 2. This gives the finite continued fraction expansion a(n)/n! = 1/(1 + 1^2/(1 + 2^2/(1 + 3^2/(1 + ... + (n-1)^2/1)))). Cf. A142979. - Peter Bala, Jul 17 2008
a(n) = A081358(n) - A092691(n). - Gary Detlefs, Jul 09 2010
E.g.f.: (x/(x-1))/G(0) where G(k) = -1 + (x-1)*k + x*(k+1)^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 18 2012
a(n) ~ log(2)*n!. - Daniel Suteu, Dec 03 2016
a(n) = (1/2)*n!*((-1)^n*(digamma((n+1)/2) - digamma((n+2)/2)) + log(4)). - Daniel Suteu, Dec 03 2016
a(n) = n!*(log(2) - (-1)^n*LerchPhi(-1, 1, n+1)). - Peter Luschny, Dec 27 2018
a(n) = A054651(n,n-1). - Pontus von Brömssen, Oct 25 2020
a(n) = Sum_{k=0..n} (-1)^k*k!*A094587(n, k+1). - Mélika Tebni, Jun 20 2022
a(n) = n * a(n-1) - (-1)^n * (n-1)! for n > 1. - Werner Schulte, Oct 20 2024

Extensions

More terms from Benoit Cloitre, Jan 27 2002
a(21)-a(22) from Pontus von Brömssen, Oct 25 2020

A347987 a(n) = [x^n] (2*n)! * Sum_{k=0..2*n} binomial(x,k).

Original entry on oeis.org

1, 1, 11, -75, 3969, -140595, 7374191, -435638203, 30421321073, -2409092861175, 214562251828275, -21195275581114635, 2301157855016159905, -272330254968023391035, 34894294917147760652775, -4812715265513253499593675, 710922905477027337578759265, -111981455662673544130741177455
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2*n)!/n! * SeriesCoefficient[Log[1+x]^n/(1-x), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2025 *)
  • PARI
    a(n) = (2*n)!*polcoef(sum(k=n, 2*n, binomial(x, k)), n);

Formula

a(n) = A054651(2*n,n) = A190782(2*n,n).
a(n) = [x^(2*n)] ((2*n)!/n!) * (log(1 + x))^n/(1 - x).
a(n) ~ (-1)^n * c * d^n * (n-1)!, where d = 8*w^2/(2*w-1), where w = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... and c = 0.07543488970038444052522917317552747476381171100725972392415521577... - Vaclav Kotesovec, Sep 27 2021, updated May 27 2025

A190782 Triangle T(n,k), read by rows, of the coefficients of x^k in the expansion of Sum_(m=0..n) binomial(x,m) = (a(k)*x^k)/n!, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 5, 0, 1, 24, 14, 11, -2, 1, 120, 94, 5, 25, -5, 1, 720, 444, 304, -75, 55, -9, 1, 5040, 3828, 364, 1099, -350, 112, -14, 1, 40320, 25584, 15980, -4340, 3969, -1064, 210, -20, 1
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 29 2012

Keywords

Comments

There is a strong relation between this triangle and triangle A048994 which deals with the binomial (x,n), this triangle being dealing with the summation of this binomial.
Apparently A054651 with reversed rows. - Mathew Englander, May 17 2014

Examples

			Triangle begins:
n\k     0       1       2       3       4       5       6      7     8
0       1
1       1       1
2       2       1       1
3       6       5       0        1
4      24      14      11       -2      1
5     120      94       5       25     -5       1
6     720     444     304      -75     55      -9       1
7    5040    3828     364     1099   -350     112     -14      1
8   40320   25584   15980    -4340   3969   -1064     210    -20     1
...
		

Crossrefs

T(2*n,n) gives A347987.

Programs

  • Mathematica
    row[n_] := CoefficientList[ Series[ Sum[ Binomial[x, m], {m, 0, n}], {x, 0, n}], x]*n!; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 04 2013 *)

Formula

T(n,k) = T(n-1,k)+ T(n-1,k-1)- T(n-2,k-1)*(n-1)+ T(n-2,k)*(n-1)^2, T(n,n)=1, T(n,0)= n! for n >= 0.
T(n,k) = T(n-1,k)*n + (A048994(n,k)), T(n,n)= 1, T(n,0)= n! for n>= 0.
E.g.f. of column k: (log(1 + x))^k/(k! * (1 - x)). - Seiichi Manyama, Sep 26 2021
T(n, k) = Sum_{i=0..n-k} Stirling1(i+k, k)*n!/(i+k)!. - Igor Victorovich Statsenko, May 27 2024

A054655 Triangle T(n,k) giving coefficients in expansion of n!*binomial(x-n,n) in powers of x.

Original entry on oeis.org

1, 1, -1, 1, -5, 6, 1, -12, 47, -60, 1, -22, 179, -638, 840, 1, -35, 485, -3325, 11274, -15120, 1, -51, 1075, -11985, 74524, -245004, 332640, 1, -70, 2086, -34300, 336049, -1961470, 6314664, -8648640, 1, -92, 3682, -83720, 1182769
Offset: 0

Views

Author

N. J. A. Sloane, Apr 18 2000

Keywords

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -5,    6;
  1, -12,   47,    -60;
  1, -22,  179,   -638,    840;
  1, -35,  485,  -3325,  11274,   -15120;
  1, -51, 1075, -11985,  74524,  -245004,  332640;
  1, -70, 2086, -34300, 336049, -1961470, 6314664, -8648640;
  ...
		

Crossrefs

Programs

  • Maple
    a054655_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (n-x,n)),x,n-k),k=0..n) end: # Peter Luschny, Nov 28 2010
  • Mathematica
    row[n_] := Table[ Coefficient[(-1)^n*Pochhammer[n - x, n], x, n - k], {k, 0, n}]; A054655 = Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Apr 06 2012, after Maple *)
  • PARI
    T(n,k)=polcoef(n!*binomial(x-n,n), n-k);

Formula

n!*binomial(x-n, n) = Sum_{k=0..n} T(n, k)*x^(n-k).
From Robert Israel, Jul 12 2016: (Start)
G.f.: Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k = hypergeom([1, -1/(2*y), (1/2)*(-1+y)/y], [-1/y], -4*x*y).
E.g.f.: Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k/n! = (1+4*x*y)^(-1/2)*((1+sqrt(1+4*x*y))/2)^(1+1/y). (End)

A054649 Triangle T(n, k) giving coefficients in expansion of n! * Sum_{i=0..n} binomial(x - n, i) in powers of x.

Original entry on oeis.org

1, 1, 0, 1, -3, 4, 1, -9, 32, -36, 1, -18, 131, -426, 528, 1, -30, 375, -2370, 7544, -9600, 1, -45, 865, -8955, 52414, -163800, 213120, 1, -63, 1729, -26565, 245854, -1366932, 4220376, -5574240, 1, -84, 3122, -66696, 893249, -7664916, 41096908, -125747664, 167973120
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			Triangle begins:
  1;
  1,   0;
  1,  -3,    4;
  1,  -9,   32,    -36;
  1, -18,  131,   -426,    528;
  1, -30,  375,  -2370,   7544,    -9600;
  1, -45,  865,  -8955,  52414,  -163800,  213120;
  1, -63, 1729, -26565, 245854, -1366932, 4220376, -5574240;
  ...
From _Peter Luschny_, Nov 27 2021: (Start)
The row reversed triangle can be seen as the coefficients of a sequence of monic polynomials with monomials sorted in ascending order which start:
[0]     1;
[1]              x;
[2]     4 -    3*x +      x^2;
[3]   -36 +   32*x -    9*x^2 +     x^3;
[4]   528 -  426*x +  131*x^2 -  18*x^3 +    x^4;
[5] -9600 + 7544*x - 2370*x^2 + 375*x^3 - 30*x^4 + x^5; (End)
		

Crossrefs

Programs

  • Maple
    # Some older Maple versions are known to have a bug in the hypergeom function.
    with(ListTools): with(PolynomialTools):
    CoeffList := p -> op(Reverse(CoefficientList(simplify(p), x))):
    p := k -> k!*hypergeom([-k, -x + k], [-k], -1):
    seq(CoeffList(p(k)), k = 0..8); # Peter Luschny, Nov 27 2021
  • Mathematica
    c[n_, k_] := Product[n-i, {i, 0, k-1}]/k!; row[n_] := CoefficientList[ n!*Sum[c[x-n, k], {k, 0, n}], x] // Reverse; Table[ row[n], {n, 0, 8}] // Flatten  (* Jean-François Alcover, Oct 04 2012 *)
  • PARI
    row(n) = Vec(n!*sum(k=0, n, binomial(x-n, k))); \\ Seiichi Manyama, Sep 24 2021

Formula

T(n, k) = n! * [x^(n - k)] hypergeom([-n, -x + n], [-n], -1). - Peter Luschny, Nov 27 2021

A348063 Coefficient of x^2 in expansion of n!* Sum_{k=0..n} binomial(x,k).

Original entry on oeis.org

1, 0, 11, 5, 304, 364, 15980, 34236, 1368936, 4429656, 173699712, 771653376, 30605906304, 175622947200, 7149130156800, 50800930272000, 2137822335475200, 18241636315507200, 796397873127782400, 7971407298921830400, 361615771356450508800, 4168685961862906982400, 196587429737202833817600
Offset: 2

Views

Author

Seiichi Manyama, Sep 26 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*polcoef(sum(k=2, n, binomial(x, k)), 2);
    
  • PARI
    a(n) = if(n<2, 0, a(n-1)+(n-1)^2*a(n-2)+(-1)^n*(n-2)!);
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^2/(2*(1-x))))
    
  • Python
    from sympy.abc import x
    from sympy import ff, expand
    def A348063(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**2) for k in range(2,n+1)) # Chai Wah Wu, Sep 27 2021

Formula

a(n) = a(n-1) + (n-1)^2 * a(n-2) + (-1)^n * (n-2)!.
E.g.f.: (log(1 + x))^2/(2 * (1 - x)).
a(n) ~ n! * log(2)^2 / 2 * (1 + (-1)^n*log(n)/(log(2)^2*n)). - Vaclav Kotesovec, Sep 27 2021

A348064 Coefficient of x^3 in expansion of n!* Sum_{k=0..n} binomial(x,k).

Original entry on oeis.org

1, -2, 25, -75, 1099, -4340, 79064, -382060, 8550916, -48306984, 1303568760, -8346754416, 266955481584, -1894529909376, 70785236377728, -547468189825536, 23610353987137536, -196402650598402560, 9679304091074250240, -85687212859582878720, 4785340778000524477440
Offset: 3

Views

Author

Seiichi Manyama, Sep 26 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*polcoef(sum(k=3, n, binomial(x, k)), 3);
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^3/(6*(1-x))))
    
  • Python
    from sympy.abc import x
    from sympy import ff, expand
    def A348064(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**3) for k in range(3,n+1)) # Chai Wah Wu, Sep 27 2021

Formula

E.g.f.: (log(1 + x))^3/(6 * (1 - x)).

A348065 Coefficient of x^4 in expansion of n!* Sum_{k=0..n} binomial(x,k).

Original entry on oeis.org

1, -5, 55, -350, 3969, -31563, 408050, -3920950, 58206676, -657328100, 11111159696, -144321864960, 2747845864464, -40364369180016, 856755330487200, -14042902728462624, 329258021171239296, -5956512800554963584, 153050034289602269952, -3028534064042216488704, 84691080748928315003904
Offset: 4

Views

Author

Seiichi Manyama, Sep 26 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*polcoef(sum(k=4, n, binomial(x, k)), 4);
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^4/(24*(1-x))))
    
  • Python
    from sympy.abc import x
    from sympy import ff, expand
    def A348065(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**4) for k in range(4,n+1)) # Chai Wah Wu, Sep 27 2021

Formula

E.g.f.: (log(1 + x))^4/(24 * (1 - x)).

A348068 Coefficient of x^5 in expansion of n!* Sum_{k=0..n} binomial(x,k).

Original entry on oeis.org

1, -9, 112, -1064, 12873, -140595, 1870385, -23551110, 351042406, -5043110072, 84074954600, -1361614072000, 25218570009424, -455365645674480, 9298765013106384, -185409487083100320, 4144212593899945056, -90492302454898284864, 2199399908894486591040
Offset: 5

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*polcoef(sum(k=5, n, binomial(x, k)), 5);
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^5/(120*(1-x))))
    
  • Python
    from sympy.abc import x
    from sympy import ff, expand
    def A348068(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**5) for k in range(5,n+1)) # Chai Wah Wu, Sep 27 2021

Formula

E.g.f.: (log(1 + x))^5/(120 * (1 - x)).

A220074 Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.

Original entry on oeis.org

1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 03 2012

Keywords

Comments

If the triangle is viewed as a square array S(m, k) = T(m+k, k), 0 <= m, 0 <= k, its first row is (1,0,1,0,1,...) with e.g.f. cosh(x), g.f. 1/(1-x^2) and subsequent rows have g.f. 1/((1+x)^n*(1-x^2)) (substitute x for -x in g.f. for A059259).
By column, S(m, k) is the coefficient of [x^m] in the generating function Sum_{i=0..k} (-1)^i/(1-x)^(i+1).
This is a rational generating function down column k with a power of (1-x) in the denominator; therefore column k is a polynomial in m respectively n. - Mathew Englander, May 14 2014
Column k multiplied by k! seems to correspond to row k of A054651, considered as a polynomial and then evaluated on the negative integers. For example, row 5 of A054651 represents the polynomial x^5 - 5*x^4 + 25*x^3 + 5*x^2 + 94*x + 120. Evaluating that for x = -1, x = -2, x = -3, ... gives (0, -360, -1440, -4080, -9600, -19920, -37680, ...) which is 5! times column 5 of this triangle. - Mathew Englander, May 23 2014
This triangle provides a solution to a question in the mathematics of gambling. For 0 < p < 1 and positive integers N and G with N < G, suppose you begin with N dollars and make repeated wagers, each time winning 1 dollar with probability p and losing 1 dollar with probability 1-p. You continue betting 1 dollar at a time until you have either G dollars (your Goal) or 0 (bankrupt). What is the probability of reaching your Goal before going bankrupt, as a function of p, N, and G? (This is a type of one-dimensional random walk.) Answer: Let Q_m_(x) be the polynomial whose coefficients are given by row m-1 of the triangle (e.g., Q_6_(x) = 1 - 4x + 7x^2 - 6x^3 + 3x^4). Then, the probability of reaching G dollars before going bankrupt is p^(G-N)*Q_N_(p)/Q_G_(p). - Mathew Englander, May 23 2014
From Paul Curtz, Mar 17 2017: (Start)
Consider the triangle Ja(n+1,k) (here, but generally Ja(n,k)) composed of the triangle a(n) prepended with a column of 0's, i.e.,
0;
0, 1;
0, 1, 0;
0, 1, -1, 1;
0, 1, -2, 2, 0;
0, 1, -3, 4, -2, 1;
0, 1, -4, 7, -6, 3, 0;
0, 1, -5, 11, -13, 9, -3, 1;
... .
The row sums are 0, 1, 1, ... = A057427(n), the most elementary autosequence of the first kind (a sequence of the first kind has 0's as main diagonal of its array of successive differences).
The row sums of the absolute values are A001045(n).
Ja applied to a sequence written in its reluctant form yields an autosequence of the first kind. Example: the reluctant form of A001045(n) is 0, 0, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 3, 5, ... = Jl.
Jl multiplied by Ja gives the triangle Jal:
0;
0, 1;
0, 1, 0;
0, 1, -1, 3;
0, 1, -2, 6, 0;
0, 1, -3, 12, -10, 11;
0, 1, -4, 21, -30, 33, 0;
0, 1, -5, 33, -65, 99, -63, 43;
... .
The row sums are A001045(n). (End)

Examples

			Triangle begins:
  1;
  1,   0;
  1,  -1,   1;
  1,  -2,   2,    0;
  1,  -3,   4,   -2,    1;
  1,  -4,   7,   -6,    3,    0;
  1,  -5,  11,  -13,    9,   -3,    1;
  1,  -6,  16,  -24,   22,  -12,    4,    0;
  1,  -7,  22,  -40,   46,  -34,   16,   -4,   1;
  1,  -8,  29,  -62,   86,  -80,   50,  -20,   5,   0;
  1,  -9,  37,  -91,  148, -166,  130,  -70,  25,  -5, 1;
  1, -10,  46, -128,  239, -314,  296, -200,  95, -30, 6, 0;
  ...
		

Crossrefs

Similar to the triangles A080242, A108561, A112555, A071920.
Cf. A000124 (column 2), A003600 (column 3), A223718 (column 4, conjectured), A257890 (column 5).

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
  • Magma
    [[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
    
  • Maple
    A059259A := proc(n,k)
        1/(1+y)/(1-x-y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    A059259 := proc(n,k)
        A059259A(n-k,k) ;
    end proc:
    A220074 := proc(i,j)
        (-1)^j*A059259(i,j) ;
    end proc: # R. J. Mathar, May 14 2014
  • Mathematica
    Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    {T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    [[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
    

Formula

Sum_{k=0..n} T(n,k) = 1.
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n-k+i, i).
T(2*n,n) = (-1)^n*A026641(n).
T(n,k) = (-1)^k*A059259(n,k).
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) - T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014

Extensions

Definition and comments clarified by Li-yao Xia, May 15 2014
Showing 1-10 of 10 results.