A024167
a(n) = n!*(1 - 1/2 + 1/3 - ... + c/n), where c = (-1)^(n+1).
Original entry on oeis.org
1, 1, 5, 14, 94, 444, 3828, 25584, 270576, 2342880, 29400480, 312888960, 4546558080, 57424792320, 948550176000, 13869128448000, 256697973504000, 4264876094976000, 87435019510272000, 1627055289796608000, 36601063093905408000, 754132445894209536000
Offset: 1
G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
-
a := n -> n!*(log(2) - (-1)^n*LerchPhi(-1, 1, n+1));
seq(simplify(a(n)), n=1..20); # Peter Luschny, Dec 27 2018
-
f[k_] := k (-1)^(k + 1)
t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 18}] (* A024167 signed *)
(* Clark Kimberling, Dec 30 2011 *)
a[ n_] := If[ n < 0, 0, n! Sum[ -(-1)^k / k, {k, n}]]; (* Michael Somos, Nov 28 2013 *)
a[ n_] := If[ n < 0, 0, n! (PolyGamma[n + 1] - PolyGamma[(n + Mod[n, 2, 1]) / 2])]; (* Michael Somos, Nov 28 2013 *)
a[ n_] := If[ n < 1, 0, (-1)^Quotient[n, 2] SymmetricPolynomial[ n - 1, Table[ -(-1)^k k, {k, n}]]]; (* Michael Somos, Nov 28 2013 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( log(1 + x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 02 2004 */
-
x='x+O('x^33); Vec(serlaplace(log(1+x)/(1-x))) \\ Joerg Arndt, Dec 27 2018
-
def A():
a, b, n = 1, 1, 2
yield(a)
while True:
yield(a)
b, a = a, a + b * n * n
n += 1
a = A(); print([next(a) for in range(20)]) # _Peter Luschny, May 19 2020
A347987
a(n) = [x^n] (2*n)! * Sum_{k=0..2*n} binomial(x,k).
Original entry on oeis.org
1, 1, 11, -75, 3969, -140595, 7374191, -435638203, 30421321073, -2409092861175, 214562251828275, -21195275581114635, 2301157855016159905, -272330254968023391035, 34894294917147760652775, -4812715265513253499593675, 710922905477027337578759265, -111981455662673544130741177455
Offset: 0
-
Table[(2*n)!/n! * SeriesCoefficient[Log[1+x]^n/(1-x), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2025 *)
-
a(n) = (2*n)!*polcoef(sum(k=n, 2*n, binomial(x, k)), n);
A190782
Triangle T(n,k), read by rows, of the coefficients of x^k in the expansion of Sum_(m=0..n) binomial(x,m) = (a(k)*x^k)/n!, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 6, 5, 0, 1, 24, 14, 11, -2, 1, 120, 94, 5, 25, -5, 1, 720, 444, 304, -75, 55, -9, 1, 5040, 3828, 364, 1099, -350, 112, -14, 1, 40320, 25584, 15980, -4340, 3969, -1064, 210, -20, 1
Offset: 0
Triangle begins:
n\k 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 2 1 1
3 6 5 0 1
4 24 14 11 -2 1
5 120 94 5 25 -5 1
6 720 444 304 -75 55 -9 1
7 5040 3828 364 1099 -350 112 -14 1
8 40320 25584 15980 -4340 3969 -1064 210 -20 1
...
-
row[n_] := CoefficientList[ Series[ Sum[ Binomial[x, m], {m, 0, n}], {x, 0, n}], x]*n!; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 04 2013 *)
A054655
Triangle T(n,k) giving coefficients in expansion of n!*binomial(x-n,n) in powers of x.
Original entry on oeis.org
1, 1, -1, 1, -5, 6, 1, -12, 47, -60, 1, -22, 179, -638, 840, 1, -35, 485, -3325, 11274, -15120, 1, -51, 1075, -11985, 74524, -245004, 332640, 1, -70, 2086, -34300, 336049, -1961470, 6314664, -8648640, 1, -92, 3682, -83720, 1182769
Offset: 0
Triangle begins:
1;
1, -1;
1, -5, 6;
1, -12, 47, -60;
1, -22, 179, -638, 840;
1, -35, 485, -3325, 11274, -15120;
1, -51, 1075, -11985, 74524, -245004, 332640;
1, -70, 2086, -34300, 336049, -1961470, 6314664, -8648640;
...
-
a054655_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (n-x,n)),x,n-k),k=0..n) end: # Peter Luschny, Nov 28 2010
-
row[n_] := Table[ Coefficient[(-1)^n*Pochhammer[n - x, n], x, n - k], {k, 0, n}]; A054655 = Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Apr 06 2012, after Maple *)
-
T(n,k)=polcoef(n!*binomial(x-n,n), n-k);
A054649
Triangle T(n, k) giving coefficients in expansion of n! * Sum_{i=0..n} binomial(x - n, i) in powers of x.
Original entry on oeis.org
1, 1, 0, 1, -3, 4, 1, -9, 32, -36, 1, -18, 131, -426, 528, 1, -30, 375, -2370, 7544, -9600, 1, -45, 865, -8955, 52414, -163800, 213120, 1, -63, 1729, -26565, 245854, -1366932, 4220376, -5574240, 1, -84, 3122, -66696, 893249, -7664916, 41096908, -125747664, 167973120
Offset: 0
Triangle begins:
1;
1, 0;
1, -3, 4;
1, -9, 32, -36;
1, -18, 131, -426, 528;
1, -30, 375, -2370, 7544, -9600;
1, -45, 865, -8955, 52414, -163800, 213120;
1, -63, 1729, -26565, 245854, -1366932, 4220376, -5574240;
...
From _Peter Luschny_, Nov 27 2021: (Start)
The row reversed triangle can be seen as the coefficients of a sequence of monic polynomials with monomials sorted in ascending order which start:
[0] 1;
[1] x;
[2] 4 - 3*x + x^2;
[3] -36 + 32*x - 9*x^2 + x^3;
[4] 528 - 426*x + 131*x^2 - 18*x^3 + x^4;
[5] -9600 + 7544*x - 2370*x^2 + 375*x^3 - 30*x^4 + x^5; (End)
-
# Some older Maple versions are known to have a bug in the hypergeom function.
with(ListTools): with(PolynomialTools):
CoeffList := p -> op(Reverse(CoefficientList(simplify(p), x))):
p := k -> k!*hypergeom([-k, -x + k], [-k], -1):
seq(CoeffList(p(k)), k = 0..8); # Peter Luschny, Nov 27 2021
-
c[n_, k_] := Product[n-i, {i, 0, k-1}]/k!; row[n_] := CoefficientList[ n!*Sum[c[x-n, k], {k, 0, n}], x] // Reverse; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Oct 04 2012 *)
-
row(n) = Vec(n!*sum(k=0, n, binomial(x-n, k))); \\ Seiichi Manyama, Sep 24 2021
A348063
Coefficient of x^2 in expansion of n!* Sum_{k=0..n} binomial(x,k).
Original entry on oeis.org
1, 0, 11, 5, 304, 364, 15980, 34236, 1368936, 4429656, 173699712, 771653376, 30605906304, 175622947200, 7149130156800, 50800930272000, 2137822335475200, 18241636315507200, 796397873127782400, 7971407298921830400, 361615771356450508800, 4168685961862906982400, 196587429737202833817600
Offset: 2
-
a(n) = n!*polcoef(sum(k=2, n, binomial(x, k)), 2);
-
a(n) = if(n<2, 0, a(n-1)+(n-1)^2*a(n-2)+(-1)^n*(n-2)!);
-
N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^2/(2*(1-x))))
-
from sympy.abc import x
from sympy import ff, expand
def A348063(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**2) for k in range(2,n+1)) # Chai Wah Wu, Sep 27 2021
A348064
Coefficient of x^3 in expansion of n!* Sum_{k=0..n} binomial(x,k).
Original entry on oeis.org
1, -2, 25, -75, 1099, -4340, 79064, -382060, 8550916, -48306984, 1303568760, -8346754416, 266955481584, -1894529909376, 70785236377728, -547468189825536, 23610353987137536, -196402650598402560, 9679304091074250240, -85687212859582878720, 4785340778000524477440
Offset: 3
-
a(n) = n!*polcoef(sum(k=3, n, binomial(x, k)), 3);
-
N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^3/(6*(1-x))))
-
from sympy.abc import x
from sympy import ff, expand
def A348064(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**3) for k in range(3,n+1)) # Chai Wah Wu, Sep 27 2021
A348065
Coefficient of x^4 in expansion of n!* Sum_{k=0..n} binomial(x,k).
Original entry on oeis.org
1, -5, 55, -350, 3969, -31563, 408050, -3920950, 58206676, -657328100, 11111159696, -144321864960, 2747845864464, -40364369180016, 856755330487200, -14042902728462624, 329258021171239296, -5956512800554963584, 153050034289602269952, -3028534064042216488704, 84691080748928315003904
Offset: 4
-
a(n) = n!*polcoef(sum(k=4, n, binomial(x, k)), 4);
-
N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^4/(24*(1-x))))
-
from sympy.abc import x
from sympy import ff, expand
def A348065(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**4) for k in range(4,n+1)) # Chai Wah Wu, Sep 27 2021
A348068
Coefficient of x^5 in expansion of n!* Sum_{k=0..n} binomial(x,k).
Original entry on oeis.org
1, -9, 112, -1064, 12873, -140595, 1870385, -23551110, 351042406, -5043110072, 84074954600, -1361614072000, 25218570009424, -455365645674480, 9298765013106384, -185409487083100320, 4144212593899945056, -90492302454898284864, 2199399908894486591040
Offset: 5
-
a(n) = n!*polcoef(sum(k=5, n, binomial(x, k)), 5);
-
N=40; x='x+O('x^N); Vec(serlaplace(log(1+x)^5/(120*(1-x))))
-
from sympy.abc import x
from sympy import ff, expand
def A348068(n): return sum(ff(n,n-k)*expand(ff(x,k)).coeff(x**5) for k in range(5,n+1)) # Chai Wah Wu, Sep 27 2021
A220074
Triangle read by rows giving coefficients T(n,k) of [x^(n-k)] in Sum_{i=0..n} (x-1)^i, 0 <= n <= k.
Original entry on oeis.org
1, 1, 0, 1, -1, 1, 1, -2, 2, 0, 1, -3, 4, -2, 1, 1, -4, 7, -6, 3, 0, 1, -5, 11, -13, 9, -3, 1, 1, -6, 16, -24, 22, -12, 4, 0, 1, -7, 22, -40, 46, -34, 16, -4, 1, 1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, -1, 1;
1, -2, 2, 0;
1, -3, 4, -2, 1;
1, -4, 7, -6, 3, 0;
1, -5, 11, -13, 9, -3, 1;
1, -6, 16, -24, 22, -12, 4, 0;
1, -7, 22, -40, 46, -34, 16, -4, 1;
1, -8, 29, -62, 86, -80, 50, -20, 5, 0;
1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1;
1, -10, 46, -128, 239, -314, 296, -200, 95, -30, 6, 0;
...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- OEIS Wiki, Autosequence
-
Flat(List([0..12], n-> List([0..n], k-> Sum([0..k], j-> (-1)^j*Binomial(n-k+j, j))))); # G. C. Greubel, Feb 18 2019
-
[[(&+[(-1)^j*Binomial(n-k+j, j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 18 2019
-
A059259A := proc(n,k)
1/(1+y)/(1-x-y) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,k) ;
end proc:
A059259 := proc(n,k)
A059259A(n-k,k) ;
end proc:
A220074 := proc(i,j)
(-1)^j*A059259(i,j) ;
end proc: # R. J. Mathar, May 14 2014
-
Table[Sum[(-1)^i*Binomial[n-k+i,i], {i, 0, k}], {n, 0, 12}, {k, 0, n} ]//Flatten (* Michael De Vlieger, Jan 27 2016 *)
-
{T(n,k) = sum(j=0,k, (-1)^j*binomial(n-k+j,j))};
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 18 2019
-
[[sum((-1)^j*binomial(n-k+j,j) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 18 2019
Definition and comments clarified by
Li-yao Xia, May 15 2014
Showing 1-10 of 10 results.
Comments