cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A053737 Sum of digits of (n written in base 4).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3}, 1->{1,2,3,4}, 2->{2,3,4,5}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 1+1+0 = 2 because 20 is written as 110 base 4.
From _Omar E. Pol_, Feb 21 2010: (Start)
This can be written as a triangle (cf. A000120):
  0,
  1,2,3,
  1,2,3,4,2,3,4,5,3,4,5,6,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,5,6,7,5,6,7,8,6,7,8,9,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,...
where the rows converge to A173524.
(End)
		

Crossrefs

Cf. A173524. - Omar E. Pol, Feb 21 2010
Sum of digits of n written in bases 2-16: A000120, A053735, this sequence, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Related base-4 sequences: A053737, A230631, A230632, A010064, A230633, A230634, A230635, A230636, A230637, A230638, A010065 (trajectory of 1).

Programs

  • Haskell
    a053737 n = if n == 0 then 0 else a053737 m + r where (m, r) = divMod n 4
    -- Reinhard Zumkeller, Mar 19 2015
    
  • MATLAB
    for u=0:104; sol(u+1)=sum(dec2base(u,4)-'0');end
    sol % Marius A. Burtea, Jan 17 2019
  • Magma
    [&+Intseq(n,4):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
    
  • Maple
    A053737 := proc(n)
        add(d,d=convert(n,base,4)) ;
    end proc: # R. J. Mathar, Oct 31 2012
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 4], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> {a, a+1, a+2, a+3}] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
    DigitSum[Range[0, 100], 4] (* Paolo Xausa, Aug 01 2024 *)
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,a(n/4)))
    
  • PARI
    a(n) = sumdigits(n, 4); \\ Michel Marcus, Aug 24 2019
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(4n+i) = a(n)+i for 0 <= i <= 3.
a(n) = n - 3*Sum_{k>0} floor(n/4^k) = n - 3*A054893(n). (End)
G.f.: (Sum_{k>=0} (x^(4^k) + 2*x^(2*4^k) + 3*x^(3*4^k))/(1 + x^(4^k) + x^(2*4^k) + x^(3*4^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
a(n) = A138530(n,4) for n > 3. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030386(n,k). - Philippe Deléham, Oct 21 2011
a(n) = A007953(A007090(n)). - Reinhard Zumkeller, Mar 19 2015
a(0) = 0; a(n) = a(n - 4^floor(log_4(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 4*log(4)/3 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A054896 a(n) = Sum_{k>0} floor(n/7^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Exponent of the highest power of 7 dividing n!.

Examples

			  a(10^0) = 0.
  a(10^1) = 1.
  a(10^3) = 16.
  a(10^3) = 164.
  a(10^4) = 1665.
  a(10^5) = 16662.
  a(10^6) = 166664.
  a(10^7) = 1666661.
  a(10^8) = 16666662.
  a(10^9) = 166666661
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

Formula

a(n) = floor(n/7) + floor(n/49) + floor(n/343) + floor(n/2401) + ...
a(n) = (n - A053828(n))/6.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/7)) + floor(n/7).
a(7*n) = n + a(n).
a(n*7^m) = a(n) + n*(7^m-1)/6.
a(k*7^m) = k*(7^m-1)/6, for 0 <= k < 7, m >= 0.
Asymptotic behavior:
a(n) = n/6 + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/6; equality holds for powers of 7.
a(n) >= (n-6)/6 - floor(log_7(n)); equality holds for n=7^m-1, m>0. -
lim inf (n/6 - a(n)) = 1/6, for n-->oo.
lim sup (n/6 - log_7(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_7(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(7^k)/(1-x^(7^k)). (End)
Partial sums of A214411. - R. J. Mathar, Jul 08 2021
a(n) = A214411(A000142(n)). - Michel Marcus, Oct 07 2024

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A090623 Triangle of T(n,k) = [n/k] + [n/k^2] + [n/k^3] + [n/k^4] + ... for n, k > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 7, 4, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 2, 1, 1, 1
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Rows start:
  1;
  1,1;
  3,1,1;
  3,1,1,1;
  4,2,1,1,1;
  4,2,1,1,1,1;
  7,2,2,1,1,1,1;
  7,4,2,1,1,1,1,1;
  8,4,2,2,1,1,1,1,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    A090623[n_, k_] := Quotient[n - DigitSum[n, k], k - 1];
    Table[A090623[n, k], {n, 2, 15}, {k, 2, n}] (* Paolo Xausa, Sep 02 2025 *)
  • PARI
    T(n,k) = {my(s = 0, j = 1); while(p=n\k^j, s += p; j++); s;} \\ Michel Marcus, Feb 02 2016
    
  • PARI
    T(n,k) = (n - sumdigits(n,k))/(k-1) \\ Zhuorui He, Aug 25 2025

Formula

For p prime, T(n, p) = A090622(n, p) is the number of times that p is a factor of n!.
T(n,k) = (n - A240236(n, k))/(k - 1). - Zhuorui He, Aug 25 2025

Extensions

a(41) onward corrected by Zhuorui He, Aug 25 2025

A242954 a(n) = Product_{i=1..n} A234957(i).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 4, 4, 16, 16, 16, 16, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 4096, 4096, 4096, 4096, 16384, 16384, 16384, 16384, 65536, 65536, 65536, 65536, 1048576, 1048576, 1048576, 1048576, 4194304, 4194304, 4194304, 4194304, 16777216, 16777216, 16777216
Offset: 0

Views

Author

Tom Edgar, May 27 2014

Keywords

Comments

This is the generalized factorial for A234957.
a(0) = 1 as it represents the empty product.

Crossrefs

Programs

  • Sage
    S=[0]+[4^valuation(i,4) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]

Formula

a(n) = Product_{i=1..n} A234957(i).
a(n) = 4^(A054893(n)). - Vaclav Kotesovec, May 28 2014

A087069 a(n) = Sum_{k >= 0} floor(n/(4^k)).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 80, 81, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2003

Keywords

Examples

			a(4) = 4 + floor(4/4) + floor(4/16) + floor(4/64) + ... = 5.
		

Crossrefs

Essentially partial sums of A115362.

Programs

  • Haskell
    import Data.List (unfoldr)
    a087069 =
       sum . unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4))
    -- Reinhard Zumkeller, Apr 22 2011
    
  • Mathematica
    Table[Sum[Floor[n/4^k], {k, 0, 1000}], {n, 0, 50}] (* G. C. Greubel, Oct 11 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,1000, floor(n/4^k)), ", ")) \\ G. C. Greubel, Oct 11 2017

Formula

a(n) = Sum_{k>=0} A030308(n,k)*A000975(k+1). - Philippe Deléham, Oct 16 2011
a(n) = A054893(4*n). - Vaclav Kotesovec, May 28 2014
G.f.: (1/(1 - x))*Sum_{k>=0} x^(4^k)/(1 - x^(4^k)). - Ilya Gutkovskiy, Mar 15 2018

A381886 Triangle read by rows: T(n, k) = Sum_{j=1..floor(log[k](n))} floor(n / k^j) if k >= 2, T(n, 1) = n, T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 3, 1, 1, 1, 0, 6, 4, 2, 1, 1, 1, 0, 7, 4, 2, 1, 1, 1, 1, 0, 8, 7, 2, 2, 1, 1, 1, 1, 0, 9, 7, 4, 2, 1, 1, 1, 1, 1, 0, 10, 8, 4, 2, 2, 1, 1, 1, 1, 1, 0, 11, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 03 2025

Keywords

Examples

			Triangle starts:
  [ 0] 1;
  [ 1] 0,  1;
  [ 2] 0,  2,  1;
  [ 3] 0,  3,  1, 1;
  [ 4] 0,  4,  3, 1, 1;
  [ 5] 0,  5,  3, 1, 1, 1;
  [ 6] 0,  6,  4, 2, 1, 1, 1;
  [ 7] 0,  7,  4, 2, 1, 1, 1, 1;
  [ 8] 0,  8,  7, 2, 2, 1, 1, 1, 1;
  [ 9] 0,  9,  7, 4, 2, 1, 1, 1, 1, 1;
  [10] 0, 10,  8, 4, 2, 2, 1, 1, 1, 1, 1;
  [11] 0, 11,  8, 4, 2, 2, 1, 1, 1, 1, 1, 1;
  [12] 0, 12, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. A011371 (column 2), A054861 (column 3), A054893 (column 4), A027868 (column 5), A054895 (column 6), A054896 (column 7), A054897 (column 8), A054898 (column 9), A078651 (row sums).

Programs

  • Maple
    T := (n, b) -> local i; ifelse(b = 0, b^n, ifelse(b = 1, n, add(iquo(n, b^i), i = 1..floor(log(n, b))))): seq(seq(T(n, b), b = 0..n), n = 0..12);
    # Alternative:
    T := (n, k) -> local j; ifelse(k = 0, k^n, ifelse(k = 1, n, add(padic:-ordp(j, k), j = 1..n))): for n from 0 to 12 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    T[n_, 0] := If[n == 0, 1, 0]; T[n_, 1] := n;
    T[n_, k_] := Last@Accumulate[IntegerExponent[Range[n], k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // MatrixForm
    (* Alternative: *)
    T[n_, k_] := Sum[Floor[n/k^j], {j, Floor[Log[k, n]]}]; T[n_, 1] := n; T[n_, 0] := 0^n; T[0, 0] = 1; Flatten@ Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2025 *)
  • PARI
    T(n,k) = if (n==0, 1, if (n==1, k, if (k==0, 0, if (k==1, n, sum(j=1, n, valuation(j, k))))));
    row(n) = vector(n+1, k, T(n,k-1)); \\ Michel Marcus, Apr 04 2025
  • Python
    from math import log
    def T(n: int, b: int) -> int:
        return (b**n if b == 0 else n if b == 1 else
            sum(n // (b**i) for i in range(1, 1 + int(log(n, b)))))
    print([[T(n, b) for b in range(n+1)] for n in range(12)])
    
  • SageMath
    def T(n, b): return (b^n if b == 0 else n if b == 1 else sum(valuation(j, b) for j in (1..n)))
    print(flatten([[T(n, b) for b in range(n+1)] for n in srange(13)]))
    

Formula

T(n, k) = Sum_{j=1..n} valuation(j, k) for n >= 2.
Showing 1-6 of 6 results.