cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A007373 Numbers k such that sigma(k+2) = sigma(k).

Original entry on oeis.org

33, 54, 284, 366, 834, 848, 918, 1240, 1504, 2910, 2913, 3304, 4148, 4187, 6110, 6902, 7169, 7912, 9359, 10250, 10540, 12565, 15085, 17272, 17814, 19004, 19688, 21410, 21461, 24881, 25019, 26609, 28124, 30592, 30788, 31484, 38210, 38982, 39786, 40310, 45354
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that antisigma(k+2) - antisigma(k) = 2*k + 3, where antisigma(m) = A024816(m) = sum of nondivisors of m. - Jaroslav Krizek, Mar 17 2013

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[300000]],3,1], {x_, , x}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[300000]],{x_,,x}][[All,1]] (* Harvey P. Dale, Nov 17 2022 *)
  • PARI
    je=[]; for(n=1,10^5,a=sigma(n); b=sigma(n+2); if(a==b,je=concat(je,n))); je

Extensions

More terms from Jason Earls, Jul 20 2001

A067888 Numbers k such that tau(k+1) = tau(k-1) where tau(k) = A000005(k).

Original entry on oeis.org

4, 6, 7, 9, 12, 18, 19, 30, 34, 41, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 103, 108, 124, 129, 137, 138, 142, 144, 150, 153, 160, 180, 183, 184, 185, 186, 192, 198, 199, 202, 204, 214, 216, 218, 220, 228, 231, 236, 240, 243, 244, 247, 248, 249, 266, 270, 282
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

If (p,p+2) are twin primes, then the composite number p+1 is in this sequence. The primes occurring in this sequence are listed in A067889. See A055574 for the analog with sigma instead of tau. - M. F. Hasler, Aug 06 2015

Crossrefs

Equals A062832 + 1. - Michel Marcus, Feb 11 2018

Programs

  • Mathematica
    Select[Range[300], Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
  • PARI
    is_A067888(n)=n>1&&numdiv(n-1)==numdiv(n+1) \\ M. F. Hasler, Aug 06 2015

A226361 Numbers n such that sigma(n) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

378624, 661152, 5479092, 5526024, 7179624, 18744216, 122321970, 168201288, 215676636, 778701984, 1482154170, 1788138780, 1974360132, 2288979096, 3361923780, 4214315484, 4757106144, 4971510492, 6264306144, 6884356716, 10730488296, 11375549304, 16851779736
Offset: 1

Views

Author

Alex Ratushnyak, Jun 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^7; t = {}; sig0 = 1; sig1 = 3; Do[sig2 = DivisorSigma[1, n + 2]; If[sig0 == sig1 + sig2, AppendTo[t, n]]; sig0 = sig1; sig1 = sig2, {n, nn}]; t (* T. D. Noe, Jun 05 2013 *)

Extensions

a(17)-a(23) from Donovan Johnson, Jun 05 2013

A067130 Numbers k such that sigma(k-1) divides sigma(k+1).

Original entry on oeis.org

2, 34, 55, 119, 285, 367, 835, 849, 919, 1241, 1505, 1559, 2911, 2914, 2939, 3305, 4149, 4188, 6111, 6903, 7170, 7913, 9360, 10251, 10541, 12566, 15086, 17273, 17759, 17815, 19005, 19689, 19919, 21411, 21462, 24882, 25020, 26610, 28125, 30593, 30789, 31485
Offset: 1

Views

Author

Benoit Cloitre, Feb 18 2002

Keywords

Crossrefs

Cf. A000203 (sigma), A055574.

Programs

Extensions

More terms from Michel Marcus, Nov 20 2013

A226475 Numbers n such that sigma(n) + sigma(n+1) = sigma(n+2) + sigma(n+3).

Original entry on oeis.org

75, 113, 295, 533, 686, 2130, 14805, 26966, 30235, 35095, 135653, 355675, 432996, 590138, 1214588, 2692853, 2952064, 3375195, 3486795, 5973014, 6880351, 7334956, 22266602, 25841659, 30483834, 37416582, 38390010, 40952513, 41109593, 57242145
Offset: 1

Views

Author

Alex Ratushnyak, Jun 11 2013

Keywords

Comments

Sigma(n) is the sum of the divisors of n: A000203.

Examples

			sigma(75) + sigma(76) = 124 + 140 = 264, and sigma(77) + sigma(78) = 96 + 168 = 264, so 75 is in the sequence.
		

Crossrefs

Programs

A067134 Numbers n such that sigma(n+1) = 2*sigma(n-1).

Original entry on oeis.org

119, 1559, 2939, 17759, 19919, 32219, 33839, 55964, 71039, 186779, 308039, 511499, 523775, 553499, 699359, 838214, 1048904, 1159379, 1328939, 1333247, 1700039, 2462687, 2703887, 2956079, 3115319, 3561095, 3764207, 3972695, 7625879, 7852919, 8048963
Offset: 1

Views

Author

Benoit Cloitre, Feb 18 2002

Keywords

Comments

For each term given here, n+1 is divisible by 3, but that's not always true; n=12396999 is a counterexample.

Crossrefs

Programs

Extensions

Edited by Dean Hickerson, Feb 20 2002

A223137 Numbers n such that sigma(n+1) - sigma(n-1) = k*n for some integer k, where sigma(n) = A000203 (sum of divisors of n).

Original entry on oeis.org

5, 34, 55, 285, 367, 835, 849, 919, 1241, 1505, 2911, 2914, 3305, 4149, 4188, 6111, 6903, 7170, 7913, 9360, 10251, 10541, 12566, 15086, 17273, 17815, 19005, 19689, 21411, 21462, 24882, 25020, 26610, 28125, 30593, 30789, 31485, 38211, 38983, 39787, 40311, 45355
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2013

Keywords

Comments

Supersequence of A055574 for k=0 (n satisfying sigma(n+1) = sigma(n-1)). For number 5 is k=1. Are there other such number for k=1 or k=-1?
Corresponding values of integers k: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,....

Examples

			Number 5 is in sequence because sigma(6) - sigma(4) = 12 - 7 = 5 = 1 * 5; k=1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], IntegerQ[(DivisorSigma[1, # + 1] - DivisorSigma[1, # - 1])/#] &] (* T. D. Noe, May 02 2013 *)

Extensions

Extended by T. D. Noe, May 02 2013

A227304 Numbers k such that sigma(k+1) divides sigma(k-1).

Original entry on oeis.org

34, 55, 285, 367, 835, 849, 919, 1241, 1505, 2911, 2914, 3305, 4149, 4188, 6111, 6903, 7170, 7913, 8506, 9360, 10251, 10541, 12566, 15086, 17273, 17815, 19005, 19689, 21411, 21462, 24882, 25020, 25501, 26610, 28125, 30361, 30593, 30789, 31485, 37741, 38211, 38983, 39787
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

The sequence consists mainly of terms of A055574 = { n | sigma(n+1) = sigma(n-1) }. - M. F. Hasler, Aug 06 2015

Examples

			Sigma(8507) = 8736 divides sigma(8505) = 17472 = 8736*2, so 8506 is in the sequence.
		

Crossrefs

Programs

A076666 Numbers n such that sigma(n) + sigma(n+3) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

2012, 2096, 15892, 17888, 39916, 102784, 141008, 146227, 482144, 487865, 1321312, 1887008, 2749057, 3513881, 7141158, 16767172, 17503912, 28122834, 30534728, 37453779, 42140437, 60994100, 67777337, 78251933, 113091820, 113768920, 129868059, 199240914, 240859196, 302897372
Offset: 1

Views

Author

Joseph L. Pe, Oct 25 2002

Keywords

Comments

Each term of the sequence marks the start of four consecutive sigma-values for which the sum of the means equals the sum of the extremes.

Examples

			sigma(2012) + sigma(2015) = 3528 + 2688 = 6216; sigma(2013) + sigma(2014) = 2976 + 3240 = 6216, so 2012 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, # ] + DivisorSigma[1, # + 3] == DivisorSigma[1, # + 1] + DivisorSigma[1, # + 2] &]

Extensions

a(6)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Alex Ratushnyak, Jun 29 2013

A294173 Numbers k whose nearest neighbors have the same number of divisors, the same number of distinct prime factors, and the same sum of divisors.

Original entry on oeis.org

34, 55, 919, 1241, 4149, 4188, 7170, 12566, 15086, 24882, 25020, 26610, 51836, 53964, 59988, 77058, 143370, 150420, 167561, 170562, 205728, 215070, 220818, 418308, 564858, 731321, 907255, 910316, 986154, 1239870, 1569336, 1622914, 1841861, 1887240, 1979307, 2229012, 2262108
Offset: 1

Views

Author

Torlach Rush, Feb 10 2018

Keywords

Comments

mu(k-1) = mu(k+1), where mu(k) = A008683(k), since k-1 and k+1 have the same number of distinct prime factors.
tau(k-1) = tau(k+1) = abs(phi(k-1) - phi(k+1)) iff abs(phi(k-1) - phi(k+1)) = 4, where phi(j) is A000010. When tau(j) = 4 omega(j) = 2 and phi(j), the product of two even numbers is divisible by 4.
For known elements:
- sigma(k +- 1) and tau(k +- 1) the greatest common divisor is 4.
- sigma(k +- 1) is divisible by tau(k +- 1).
- the digital root of sigma(k +- 1) is either 3 or 9.
- the prime signature of k +- 1 is the same (see question below).
The first prime terms are 919, 110495719, 2587274227, 3908452759, 4020447619, and 9314901619. - Giovanni Resta, Feb 12 2018
Are the prime signatures of k +- 1 always the same? - Andrey Zabolotskiy, Feb 14 2018

Examples

			34 is in the sequence because tau(33)=tau(35)=4, omega(33)=omega(35)=2, and sigma(33)=sigma(35)=48.
919 is in the sequence because tau(918)=tau(920)=16, omega(918)=omega(920)=3, and sigma(918)=sigma(920)=2160.
		

Crossrefs

Intersection of A067888, A088070, and A055574.

Programs

  • GAP
    Filtered([2..2000000],k->Sigma(k-1)=Sigma(k+1) and Number(FactorsInt(k-1))=Number(FactorsInt(k+1)) and Tau(k-1)=Tau(k+1)); # Muniru A Asiru, Feb 17 2018
    
  • Maple
    with(numtheory):
    select(k->sigma(k-1)=sigma(k+1) and mobius(k-1)=mobius(k+1) and tau(k-1)=tau(k+1), [$2..2000000]); # Muniru A Asiru, Feb 17 2018
  • Mathematica
    1 + Position[Partition[Array[{DivisorSigma[0, #], DivisorSigma[1, #], PrimeOmega[#]} &, 10^6], 3, 1], ?(#[[1]] == +#[[-1]] &), {1}, Heads -> False][[All, 1]] (* _Michael De Vlieger, Feb 17 2018 *)
  • PARI
    list(lim)=my(v=List(),k2=7,s2=sigma(k2),k1=8,s1=sigma(k1),s); forfactored(k=9,1+lim\1, s=sigma(k); if(s==s2 && numdiv(k)==numdiv(k2) && omega(k)==omega(k2), listput(v,k1[1])); k2=k1; k1=k; s2=s1; s1=s); Vec(v) \\ Charles R Greathouse IV, Feb 20 2018
Showing 1-10 of 12 results. Next