A055897 a(n) = n*(n-1)^(n-1).
1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Frank Ellermann, Illustration of binomial transforms
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
GAP
List([1..20], n-> n*(n-1)^(n-1)); # G. C. Greubel, Aug 10 2019
-
Haskell
a055897 n = n * (n - 1) ^ (n - 1) -- Reinhard Zumkeller, Aug 31 2014
-
Magma
[n*(n-1)^(n-1): n in [1..20]] // Wesley Ivan Hurt, Jun 26 2014
-
Maple
A055897:=n->`if`(n=1,1,n*(n-1)^(n-1)); seq(A055897(n), n=1..20); # Wesley Ivan Hurt, Jun 26 2014
-
Mathematica
Join[{1},Table[n(n-1)^(n-1), {n,2,20}]] (* Harvey P. Dale, Jul 18 2011 *)
-
PARI
{a(n)=polcoeff(1/(1-n*x+x*O(x^n))^2, n)} \\ Paul D. Hanna, Dec 27 2012
-
Sage
[n*(n-1)^(n-1) for n in (1..20)] # G. C. Greubel, Aug 10 2019
Formula
E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014
Extensions
Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001
Comments