cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056000 a(n) = n*(n+9)/2.

Original entry on oeis.org

0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475
Offset: 0

Views

Author

Barry E. Williams, Jun 16 2000

Keywords

Comments

Numbers m >= 0 such that 8m+81 is a square. - Bruce J. Nicholson, Jul 29 2017

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

Column m=2 of (1, 5)-Pascal triangle A096940.
Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.

Programs

  • Mathematica
    Table[n (n + 9)/2, {n, 0, 50}] (* or *)
    FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *)
    Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *)
    CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    a(n)=n*(n+9)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = A000217(n+4) - 10.
G.f.: x(5-4x)/(1-x)^3.
From Zerinvary Lajos, Oct 01 2006: (Start)
a(n) = A000096(n) + 3*n.
a(n) = A055999(n) + n.
a(n) = A056115(n) - n.
(End)
a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006
a(n) = A126890(n,4) for n > 3. - Reinhard Zumkeller, Dec 30 2006
a(n) = A028569(n)/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = n + a(n-1) + 4. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010
Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012
a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 1879/11340. - Amiram Eldar, Jul 03 2020
a(n) = A000217(n+1) + A008585(n) - 1. - Leo Tavares, Sep 22 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -567*cos(sqrt(89)*Pi/2)/(220*Pi).
Product_{n>=1} (1 + 1/a(n)) = 35*cos(sqrt(73)*Pi/2)/(4*Pi). (End)

Extensions

More terms from James Sellers, Jul 04 2000