cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A273891 Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1

Views

Author

Marko Riedel, Jun 02 2016

Keywords

Comments

For bracelets, chiral pairs are counted as one.

Examples

			Triangle begins with T(1,1):
1;
1,  1;
1,  2,    1;
1,  4,    6,     3;
1,  6,   18,    24,     12;
1, 11,   56,   136,    150,     60;
1, 16,  147,   612,   1200,   1080,     360;
1, 28,  411,  2619,   7905,  11970,    8820,    2520;
1, 44, 1084, 10480,  46400, 105840,  129360,   80640,  20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
		

Crossrefs

Row sums give A019537.
Cf. A087854 (oriented), A305540 (achiral), A305541 (chiral).

Programs

  • Mathematica
    (* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
    Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)

Formula

T(n,k) = Sum_{i=0..k-1} (-1)^i * binomial(k,i) * A081720(n,k-i). - Andrew Howroyd, Mar 25 2017
From Robert A. Russell, Sep 26 2018: (Start)
T(n,k) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where S2 is the Stirling subset number A008277.
G.f. for column k>1: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j*x^d).
T(n,k) = (A087854(n,k) + A305540(n,k)) / 2 = A087854(n,k) - A305541(n,k) = A305541(n,k) + A305540(n,k).
(End)

A091696 Number of classes of compositions of n equivalent under reflection or cycling.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 17, 29, 45, 77, 125, 223, 379, 686, 1223, 2249, 4111, 7684, 14309, 27011, 50963, 96908, 184409, 352697, 675187, 1296857, 2493725, 4806077, 9272779, 17920859, 34669601, 67159049, 130216123, 252745367, 490984487, 954637557, 1857545299
Offset: 1

Views

Author

Neil Fernandez, Jan 29 2004

Keywords

Comments

Equivalently, the number of radial cutting patterns of a (maximally symmetric) circular cake such that all resulting pieces are a multiple of 1/n of the whole. - Peter Munn, Oct 27 2020

Examples

			7 has 15 partitions and 64 compositions. Compositions can be mapped to other compositions by reflection, cycling, or both, e.g., {1,2,4} -> {4,2,1} (reflection), {2,4,1} (cycling), or {1,4,2} (both); this defines the equivalence relation used. The number of equivalence classes so defined is 2 greater than the number of partitions because only {3,1,2,1} and {2,1,2,1,1} (and their equivalents) cannot be mapped to the conventionally stated forms of partitions (here, {3,2,1,1} and {2,2,1,1,1} respectively). So a(7) = 15 + 2 = 17.
		

Crossrefs

DIK transform of A057427.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(phi(d)*2^(n/d)/(2*n), d=divisors(n))
            +`if`(irem(n, 2)=0, 2^(n/2-1) +2^(n/2-2), 2^((n-1)/2)) -1:
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    Needs["Combinatorica`"]
    nn=40;Apply[Plus,Table[CoefficientList[Series[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x],{n,1,nn}]]  (* Geoffrey Critzer, Oct 18 2012 *)
    mx:=50;CoefficientList[Series[(Sum[(EulerPhi[n] Log[2+1/(-1+x^n)])/n,{n,1,mx}]+(1-1x^2+ x^3)/((x-1) (1-2 x^2)))/(-2),{x,0,mx}],x] (* Herbert Kociemba, Dec 04 2016 *)
    a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n) - 1; Array[a, 37] (* Jean-François Alcover, Nov 05 2017 *)

Formula

a(n) = A000029(n) - 1.
a(n) = A056342(n) + 1.
G.f.: ( Sum_{n>=1} phi(n)*log(2+1/(-1+x^n))/n + (1-1x^2+x^3)/((x-1)*(1-2*x^2)) )/(-2). - Herbert Kociemba, Dec 04 2016

Extensions

More terms from Sean A. Irvine, Feb 09 2012

A214308 a(n) is the number of all two colored bracelets (necklaces with turning over allowed) with n beads with the two colors from a repertoire of n distinct colors, for n>=2.

Original entry on oeis.org

1, 6, 24, 60, 165, 336, 784, 1584, 3420, 6820, 14652, 29484, 62335, 128310, 269760, 558960, 1175499, 2446668, 5131900, 10702020, 22385517, 46655224, 97344096, 202555800, 421478200, 875297124, 1816696728, 3764747868, 7795573230, 16121364000, 33310887808
Offset: 2

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the second column (m=2) of triangle A214306.
Each 2 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2]], with p[1] >= p[2] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,2)= A008284(n,2) = floor(n/2) partitions of n with 2 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this sequence with A000029 where also single colored bracelets are included, and the color repertoire is only [c[1], c[2]] for all n.

Examples

			a(5) = A213941(5,2) + A213941(5,3) = 20 + 40 = 60 from the bracelet (with colors j for c[j], j=1,2,..,5) cyclic(11112) which represents a class of order A035206(5,2) = 20 (if all 5 colors are used), cyclic(11122) and cyclic(11212) each representing also a color class of 20 members each, summing to 60 bracelets  with five beads and five colors available for the two color signatures [4,1] and [3,2].
		

Crossrefs

Cf. A213941, A214306, A213942 (m=2, representative bracelets), A214310 (m=3).

Formula

a(n) = A214306(n,2), n >= 2.
a(n) = sum(A213941(n,k),k=2..A008284(n,2)+1), n>=2, with A008284(n,2) = floor(n/2).
a(n) = binomial(n,2) * A056342(n). - Andrew Howroyd, Mar 25 2017

Extensions

a(25)-a(32) from Andrew Howroyd, Mar 25 2017

A103442 Row sums of A103441. Number of two-colored bracelets of n beads with different sets of distances among the white beads.

Original entry on oeis.org

1, 2, 4, 6, 11, 16, 27, 44, 73, 124, 199, 372, 613, 1142, 1874, 3926, 6209, 13660, 21539, 46240, 80142
Offset: 2

Views

Author

Wouter Meeussen, Feb 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* see A103441 *) Table[Length[Union[(dist[f[ #1], n]&)/@Flatten[Table[ListNecklaces[n, Join[1+0*Range[i], 0*Range[n-i]], Dihedral], {i, 1, n-1}], 1]]], {n, 2, 16}]

Extensions

a(21) & a(22) from Robert G. Wilson v, Aug 09 2010

A375617 Numbers of facially complete 2-connected planar embeddings.

Original entry on oeis.org

0, 0, 1, 3, 6, 15, 32, 94, 295, 1169, 4870, 22110, 102490, 489479, 2370856, 11655722, 57918613, 290697549, 1471349079, 7504192109, 38532719288, 199076246027, 1034236802988, 5400337234593, 28329240686563, 149244907924935, 789351357094770, 4190055030317638
Offset: 1

Views

Author

Eric W. Weisstein, Aug 21 2024

Keywords

Programs

  • Mathematica
    prism[n_] := Floor[((n - 3)^2 + 6)/12]
    tetrahedral[n_] := prism[n - 1]
    bipartite[n_] := prism[n - 2]
    wheel[n_] := (Mod[n - 1, 2] + 3) 2^Quotient[n - 1, 2]/4 + DivisorSum[n - 1, EulerPhi[#] 2^((n - 1)/#) &]/(2 (n - 1)) - 3
    cycle[n_] := Module[{f, F, x},
      f[x_, m_] := x + Sum[(Binomial[s - 2, r - 1] Binomial[r + s - 1, s] x^s)/r, {r, m}, {s, 2, m}];
      F[x_, m_] := Series[((3 x^2 - 2 x f[x, m] + f[x, m]^2) - (2 + 2 x + 7 x^2 - 4 x f[x, m] + 2 f[x, m]^2) f[x^2, m] + 2 f[x^2, m]^2)/(4 (2 f[x^2, m] - 1)) + Sum[If[Mod[k, d] == 0, (EulerPhi[d] f[x^d, m]^(k/d))/k, 0], {k, 3, m}, {d, k}]/2, {x, 0, m}];
      CoefficientList[F[x, n], x][[-1]]]
    a[1] = a[2] = 0;
    a[n_] := prism[n] + tetrahedral[n] + bipartite[n] + wheel[n] + cycle[n]
    Table[a[n], {n, 20}]

Formula

a(n) = A001399(n - 6) + A001399(n - 7) + A001399(n - 8) + (A056342(n - 1) - 1) + A001004(n).

A056348 Number of primitive (period n) bracelets using exactly two different colored beads.

Original entry on oeis.org

0, 1, 2, 3, 6, 8, 16, 24, 42, 69, 124, 208, 378, 668, 1214, 2220, 4110, 7630, 14308, 26931, 50944, 96782, 184408, 352450, 675180, 1296477, 2493680, 4805388, 9272778, 17919558, 34669600
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Identical to A001371 for n>1.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A001037.

Formula

Sum mu(d)*A056342(n/d) where d divides n.
Showing 1-6 of 6 results.