A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A091696
Number of classes of compositions of n equivalent under reflection or cycling.
Original entry on oeis.org
1, 2, 3, 5, 7, 12, 17, 29, 45, 77, 125, 223, 379, 686, 1223, 2249, 4111, 7684, 14309, 27011, 50963, 96908, 184409, 352697, 675187, 1296857, 2493725, 4806077, 9272779, 17920859, 34669601, 67159049, 130216123, 252745367, 490984487, 954637557, 1857545299
Offset: 1
7 has 15 partitions and 64 compositions. Compositions can be mapped to other compositions by reflection, cycling, or both, e.g., {1,2,4} -> {4,2,1} (reflection), {2,4,1} (cycling), or {1,4,2} (both); this defines the equivalence relation used. The number of equivalence classes so defined is 2 greater than the number of partitions because only {3,1,2,1} and {2,1,2,1,1} (and their equivalents) cannot be mapped to the conventionally stated forms of partitions (here, {3,2,1,1} and {2,2,1,1,1} respectively). So a(7) = 15 + 2 = 17.
-
with(numtheory):
a:= n-> add(phi(d)*2^(n/d)/(2*n), d=divisors(n))
+`if`(irem(n, 2)=0, 2^(n/2-1) +2^(n/2-2), 2^((n-1)/2)) -1:
seq(a(n), n=1..40); # Alois P. Heinz, Oct 20 2012
-
Needs["Combinatorica`"]
nn=40;Apply[Plus,Table[CoefficientList[Series[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x],{n,1,nn}]] (* Geoffrey Critzer, Oct 18 2012 *)
mx:=50;CoefficientList[Series[(Sum[(EulerPhi[n] Log[2+1/(-1+x^n)])/n,{n,1,mx}]+(1-1x^2+ x^3)/((x-1) (1-2 x^2)))/(-2),{x,0,mx}],x] (* Herbert Kociemba, Dec 04 2016 *)
a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n) - 1; Array[a, 37] (* Jean-François Alcover, Nov 05 2017 *)
A214308
a(n) is the number of all two colored bracelets (necklaces with turning over allowed) with n beads with the two colors from a repertoire of n distinct colors, for n>=2.
Original entry on oeis.org
1, 6, 24, 60, 165, 336, 784, 1584, 3420, 6820, 14652, 29484, 62335, 128310, 269760, 558960, 1175499, 2446668, 5131900, 10702020, 22385517, 46655224, 97344096, 202555800, 421478200, 875297124, 1816696728, 3764747868, 7795573230, 16121364000, 33310887808
Offset: 2
a(5) = A213941(5,2) + A213941(5,3) = 20 + 40 = 60 from the bracelet (with colors j for c[j], j=1,2,..,5) cyclic(11112) which represents a class of order A035206(5,2) = 20 (if all 5 colors are used), cyclic(11122) and cyclic(11212) each representing also a color class of 20 members each, summing to 60 bracelets with five beads and five colors available for the two color signatures [4,1] and [3,2].
A103442
Row sums of A103441. Number of two-colored bracelets of n beads with different sets of distances among the white beads.
Original entry on oeis.org
1, 2, 4, 6, 11, 16, 27, 44, 73, 124, 199, 372, 613, 1142, 1874, 3926, 6209, 13660, 21539, 46240, 80142
Offset: 2
-
(* see A103441 *) Table[Length[Union[(dist[f[ #1], n]&)/@Flatten[Table[ListNecklaces[n, Join[1+0*Range[i], 0*Range[n-i]], Dihedral], {i, 1, n-1}], 1]]], {n, 2, 16}]
A375617
Numbers of facially complete 2-connected planar embeddings.
Original entry on oeis.org
0, 0, 1, 3, 6, 15, 32, 94, 295, 1169, 4870, 22110, 102490, 489479, 2370856, 11655722, 57918613, 290697549, 1471349079, 7504192109, 38532719288, 199076246027, 1034236802988, 5400337234593, 28329240686563, 149244907924935, 789351357094770, 4190055030317638
Offset: 1
-
prism[n_] := Floor[((n - 3)^2 + 6)/12]
tetrahedral[n_] := prism[n - 1]
bipartite[n_] := prism[n - 2]
wheel[n_] := (Mod[n - 1, 2] + 3) 2^Quotient[n - 1, 2]/4 + DivisorSum[n - 1, EulerPhi[#] 2^((n - 1)/#) &]/(2 (n - 1)) - 3
cycle[n_] := Module[{f, F, x},
f[x_, m_] := x + Sum[(Binomial[s - 2, r - 1] Binomial[r + s - 1, s] x^s)/r, {r, m}, {s, 2, m}];
F[x_, m_] := Series[((3 x^2 - 2 x f[x, m] + f[x, m]^2) - (2 + 2 x + 7 x^2 - 4 x f[x, m] + 2 f[x, m]^2) f[x^2, m] + 2 f[x^2, m]^2)/(4 (2 f[x^2, m] - 1)) + Sum[If[Mod[k, d] == 0, (EulerPhi[d] f[x^d, m]^(k/d))/k, 0], {k, 3, m}, {d, k}]/2, {x, 0, m}];
CoefficientList[F[x, n], x][[-1]]]
a[1] = a[2] = 0;
a[n_] := prism[n] + tetrahedral[n] + bipartite[n] + wheel[n] + cycle[n]
Table[a[n], {n, 20}]
A056348
Number of primitive (period n) bracelets using exactly two different colored beads.
Original entry on oeis.org
0, 1, 2, 3, 6, 8, 16, 24, 42, 69, 124, 208, 378, 668, 1214, 2220, 4110, 7630, 14308, 26931, 50944, 96782, 184408, 352450, 675180, 1296477, 2493680, 4805388, 9272778, 17919558, 34669600
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-6 of 6 results.
Comments