A056542 a(n) = n*a(n-1) + 1, a(1) = 0.
0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145, 4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690, 4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022, 807349297937397600485
Offset: 1
Examples
a(4) = 4*a(3) + 1 = 4*4 + 1 = 17. Permutations of order 3 .. Length of first run * First position 123..3*1 132..2*1 213..1*2 231..2*2 312..1*3 321..1*3 a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
References
- D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
- D. E. Knuth, TAOCP Vol. 4, Pre-fascicle 2b (generating all permutations).
- Tom Muller, Prime and Composite Terms in Sloane's Sequence A056542, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.3. [Includes factorizations of a(1) through a(50)]
- Hugo Pfoertner, FORTRAN implementation of Knuth's Algorithm L for lexicographic permutation generation.
- R. Sedgewick, Permutation generation methods, Computing Surveys, 9 (1977), 137-164.
- Sam Wagstaff, Factorizations of a(51) through a(90)
Crossrefs
Programs
-
Haskell
a056542 n = a056542_list !! (n-1) a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list) -- Reinhard Zumkeller, Mar 24 2013
-
Magma
[n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
-
Mathematica
tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *) FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)
Formula
a(n) = floor((e-2)*n!).
a(n) = A002627(n) - n!.
a(n) = A000522(n) - 2*n!.
a(n) = n! - A056543(n).
a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, n > 2. - Gary Detlefs, Jun 22 2010
1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - 5!/(86*517) - ... (see A002627 and A185108). - Peter Bala, Oct 09 2013
E.g.f.: (exp(x) - 1 - x) / (1 - x). - Ilya Gutkovskiy, Jun 26 2022
Extensions
More terms from James Sellers, Jul 04 2000
Comments