cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A227048 Irregular triangle read by rows: row n, for n >= 0, lists the nonnegative differences 3^n - 2^m, m >= 0, in increasing order.

Original entry on oeis.org

0, 1, 2, 1, 5, 7, 8, 11, 19, 23, 25, 26, 17, 49, 65, 73, 77, 79, 80, 115, 179, 211, 227, 235, 239, 241, 242, 217, 473, 601, 665, 697, 713, 721, 725, 727, 728, 139, 1163, 1675, 1931, 2059, 2123, 2155, 2171, 2179, 2183, 2185, 2186, 2465, 4513, 5537, 6049, 6305
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 29 2013

Keywords

Comments

A020914(n) = length of n-th row;
T(n,1) = A056577(n);
T(n,A098294(n)) = A001047(n);
T(n,A020914(n)) = A024023(n);
T(n,k) = A196486(n,A020914(n)-k) for n > 0, k = 1..A056576(n).

Examples

			Initial rows:
0:  0
1:  1,2
2:  1,5,7,8
3:  11,19,23,25,26 (= 27-16, 27-8, 27-4, 27-2, 27-1)
4:  17,49,65,73,77,79,80
5:  115,179,211,227,235,239,241,242
6:  217,473,601,665,697,713,721,725,727,728
7:  139,1163,1675,1931,2059,2123,2155,2171,2179,2183,2185,2186
8:  2465,4513,5537,6049,6305,6433,6497,6529,6545,6553,6557,6559,6560
...
		

Crossrefs

Programs

  • Haskell
    a227048 n k = a227048_tabf !! n !! (k-1)
    a227048_row n = a227048_tabf !! n
    a227048_tabf = map f a000244_list  where
       f x = reverse $ map (x -) $ takeWhile (<= x) a000079_list

Extensions

Definition revised by N. J. A. Sloane, Oct 11 2019

A063005 Difference between 2^n and the next smaller or equal power of 3.

Original entry on oeis.org

0, 1, 1, 5, 7, 5, 37, 47, 13, 269, 295, 1319, 1909, 1631, 9823, 13085, 6487, 72023, 84997, 347141, 517135, 502829, 2599981, 3605639, 2428309, 19205525, 24062143, 5077565, 139295293, 149450423, 686321335, 985222181, 808182895, 5103150191, 6719515981, 2978678759
Offset: 0

Views

Author

Jens Voß, Jul 02 2001

Keywords

Comments

Sequence generalized : a(n) = A^n - B^(floor(log_B (A^n))) where A, B are integers. This sequence has A = 2, B = 3; A056577 has A = 3, B = 2. - Ctibor O. Zizka, Mar 03 2008

Crossrefs

Cf. A000079 (2^n), A000244 (3^n), A136409.

Programs

  • Maple
    a:= n-> (t-> t-3^ilog[3](t))(2^n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    a[n_] := 2^n - 3^Floor[Log[3, 2] * n]; Array[a, 36, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    for(n=0,50,print1(2^n-3^floor(log(2^n)/log(3))","))
    
  • Python
    def a(n):
        m, p, target = 0, 1, 2**n
        while p <= target:  m += 1; p *= 3
        return target - 3**(m-1)
    print([a(n) for n in range(36)]) # Michael S. Branicky, Nov 19 2021

Formula

a(n) = 2^n - 3^(floor (log_3 (2^n))).
a(n) = A000079(n) - 3^A136409(n). - Michel Marcus, Nov 19 2021

Extensions

More terms from Ralf Stephan, Mar 20 2003

A056850 Minimal absolute difference of 3^n and 2^k.

Original entry on oeis.org

0, 1, 1, 5, 17, 13, 217, 139, 1631, 3299, 6487, 46075, 7153, 502829, 588665, 2428309, 9492289, 5077565, 118985033, 88519643, 808182895, 1870418611, 2978678759, 25423702091, 7551629537, 252223018333, 342842572777, 1170495537221, 5284606410545, 1738366812781
Offset: 0

Views

Author

Robert G. Wilson v, Aug 30 2000

Keywords

Comments

Except for 3^0 - 2^0, 3^1 - 2^1 and 3^2 - 2^3, there are no cases where the differences are less than 4.
It is known that a(n) tends to infinity as n tends to infinity. Indeed, Tijdeman showed that there exists an effectively computable constant c > 0 such that |2^x - 3^y| > 2^x/x^c. - Tomohiro Yamada, Sep 29 2017
Empirical observation: For at least values a(0) through a(6308), k-2 < n*log_2(3) < k+2. - Matthew Schuster, Mar 28 2021
For all n >= 0, the lower and upper limits on n*log_2(3) - k are log_2(3/4) = -0.4150374... and log_2(3/2) = 0.5849625..., respectively; i.e., 0 <= n*log_2(3) - k - log_2(3/4) < 1. - Jon E. Schoenfield, Apr 21 2021

Examples

			For n = 4, the closest power of 2 to 3^n = 81 is 2^6 = 64, so a(4) = |3^4 - 2^6| = |81 - 64| = 17. - _Jon E. Schoenfield_, Sep 30 2017
		

Crossrefs

Cf. A056577 (smallest 3^n-2^k), A063003 (smallest 2^k-3^n).

Programs

  • Mathematica
    Table[Min[# - 2^Floor@ Log2@ # &[3^n], 2^Ceiling@ Log2@ # - # &[3^n]], {n, 0, 27}]

Extensions

a(28)-a(29) from Jon E. Schoenfield, Mar 31 2021

A063003 Difference between 3^n and the next larger or equal power of 2.

Original entry on oeis.org

0, 1, 7, 5, 47, 13, 295, 1909, 1631, 13085, 6487, 84997, 517135, 502829, 3605639, 2428309, 24062143, 5077565, 149450423, 985222181, 808182895, 6719515981, 2978678759, 43295774645, 267326277407, 252223018333, 1856180682775
Offset: 0

Views

Author

Jens Voß, Jul 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^Ceiling@ Log2@ # - # &[3^n], {n, 0, 26}]  (* Michael De Vlieger, Sep 30 2017 *)
  • PARI
    { default(realprecision, 50); t=1/log(2); for (n=0, 200, write("b063003.txt", n, " ", 2^ceil(t*log(3^n)) - 3^n) ) } \\ Harry J. Smith, Aug 15 2009

Formula

a(n) = 2^(ceiling(log_2(3^n))) - 3^n.

Extensions

More terms from Marc LeBrun, Jul 11 2001

A063004 Difference between 2^n and the next larger or equal power of 3.

Original entry on oeis.org

0, 1, 5, 1, 11, 49, 17, 115, 473, 217, 1163, 139, 2465, 11491, 3299, 26281, 111611, 46075, 269297, 7153, 545747, 2685817, 588665, 5960299, 26269505, 9492289, 62031299, 253202761, 118985033, 625390555, 88519643, 1339300753
Offset: 0

Views

Author

Jens Voß, Jul 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    dp23[n_]:=Module[{t=2^n},3^Ceiling[Log[3,t]]-t]; Array[dp23,40,0] (* Harvey P. Dale, Nov 20 2015 *)
  • PARI
    for(n=1,50,print1(3^ceil(log(2^n)/log(3))-2^n","))

Formula

a(n) = 3^ceiling(log_3(2^n)) - 2^n.

Extensions

More terms from Ralf Stephan, Mar 21 2003

A098232 Largest power of 2 <= 3^n.

Original entry on oeis.org

1, 2, 8, 16, 64, 128, 512, 2048, 4096, 16384, 32768, 131072, 524288, 1048576, 4194304, 8388608, 33554432, 67108864, 268435456, 1073741824, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 549755813888, 2199023255552, 4398046511104, 17592186044416
Offset: 0

Views

Author

Henry Bottomley, Oct 25 2004

Keywords

Examples

			a(4)=64 since 3^4=81 and 64 <= 81 < 128.
		

Crossrefs

Programs

Formula

a(n) = 2^floor(n*log_2(3)) = A000079(A056576(n)) = A000244(n)-A056577(n).

A196486 Irregular triangle 3^n-2^m.

Original entry on oeis.org

1, 7, 5, 1, 25, 23, 19, 11, 79, 77, 73, 65, 49, 17, 241, 239, 235, 227, 211, 179, 115, 727, 725, 721, 713, 697, 665, 601, 473, 217, 2185, 2183, 2179, 2171, 2155, 2123, 2059, 1931, 1675, 1163, 139, 6559, 6557, 6553, 6545, 6529, 6497, 6433, 6305, 6049, 5537
Offset: 1

Views

Author

Zak Seidov, Oct 03 2011

Keywords

Comments

Each n-th row consists of A056576(n) terms, the first term is 3^n-2, n-th term is 3^n-2^n=A001047(n), and the last term is A056577(n).
T(n,k) = A227048(n,A056576(n)-k) for k = 1..A056576(n). - Reinhard Zumkeller, Jun 30 2013

Examples

			Rows are:
n=1: 1
n=2: 7,5,1
n=3: 25,23,19,11
n=4: 79,77,73,65,49,17
n=5: 241,239,235,227,211,179,115.
		

Crossrefs

Programs

  • Haskell
    a196486 n k = a196486_tabf !! (n-1) !! (k-1)
    a196486_row n = a196486_tabf !! (n-1)
    a196486_tabf = map (tail . reverse) $ tail a227048_tabf
    -- Reinhard Zumkeller, Jun 30 2013
  • Mathematica
    Flatten[Table[3^k - 2^m, {k, 10}, {m, Floor[Log[2, 3^k]]}]]

A292410 Difference between (2n+1)^2 and highest power of 2 less than or equal to (2n+1)^2.

Original entry on oeis.org

0, 1, 9, 17, 17, 57, 41, 97, 33, 105, 185, 17, 113, 217, 329, 449, 65, 201, 345, 497, 657, 825, 1001, 161, 353, 553, 761, 977, 1201, 1433, 1673, 1921, 129, 393, 665, 945, 1233, 1529, 1833, 2145, 2465, 2793, 3129, 3473, 3825, 89, 457, 833, 1217, 1609, 2009, 2417, 2833, 3257
Offset: 0

Views

Author

Zhandos Mambetaliyev, Sep 15 2017

Keywords

Examples

			a(0) = 1^2 - 2^0 =  0.
a(1) = 3^2 - 2^3 =  1.
a(2) = 5^2 - 2^4 =  9.
a(3) = 7^2 - 2^5 = 17.
a(4) = 9^2 - 2^6 = 17.
		

Crossrefs

Cf. A000079 (2^n), A016754 (odd squares), A053645 (distance to power of 2), A056577.

Programs

  • Maple
    seq((2*n+1)^2 - 2^ilog2((2*n+1)^2), n=0..100); @ Robert Israel, Oct 19 2017
  • Mathematica
    Table[# - 2^Floor@ Log2@ # &[(2 n + 1)^2], {n, 0, 53}] (* Michael De Vlieger, Sep 18 2017 *)
  • PARI
    a(n) = my(k = 0); while(2^k < (2*n+1)^2, k++); if (k, k--); (2*n+1)^2 - 2^k; \\ Michel Marcus, Sep 16 2017

Formula

a(n) = A053645(A016754(n)). - Michel Marcus, Sep 16 2017

Extensions

More terms from Michel Marcus, Sep 16 2017

A292425 The smallest positive number of the form 3^n-2^a-2^b.

Original entry on oeis.org

0, 0, 3, 1, 51, 89, 11, 417, 1251, 9897, 13307, 3057, 21459, 64377, 1765995, 1103681, 28476867, 51876169, 21410779, 265558929, 796676787, 5611255833, 8243832907, 3256662241, 22654888611, 67964665833, 1028527718331, 886559899441, 15853819231635, 29969271650489
Offset: 1

Views

Author

Tomohiro Yamada, Sep 29 2017

Keywords

Comments

It follows from a work of Vojta that a(n) tends to infinity as n tends to infinity.

References

  • P. Vojta, Integral points on varieties. Thesis, Harvard, 1983.

Crossrefs

Cf. A056577 (smallest 3^n-2^k).

Programs

  • PARI
    f(x)=x-2^floor(log(x)/log(2)); g(x)=f(f(x)); a(n)=g(3^n)
    
  • PARI
    a(n)={my(t=3^n); t-=1<Andrew Howroyd, Dec 23 2019

Extensions

Terms a(15) and beyond from Andrew Howroyd, Dec 23 2019
Showing 1-9 of 9 results.