A227048
Irregular triangle read by rows: row n, for n >= 0, lists the nonnegative differences 3^n - 2^m, m >= 0, in increasing order.
Original entry on oeis.org
0, 1, 2, 1, 5, 7, 8, 11, 19, 23, 25, 26, 17, 49, 65, 73, 77, 79, 80, 115, 179, 211, 227, 235, 239, 241, 242, 217, 473, 601, 665, 697, 713, 721, 725, 727, 728, 139, 1163, 1675, 1931, 2059, 2123, 2155, 2171, 2179, 2183, 2185, 2186, 2465, 4513, 5537, 6049, 6305
Offset: 0
Initial rows:
0: 0
1: 1,2
2: 1,5,7,8
3: 11,19,23,25,26 (= 27-16, 27-8, 27-4, 27-2, 27-1)
4: 17,49,65,73,77,79,80
5: 115,179,211,227,235,239,241,242
6: 217,473,601,665,697,713,721,725,727,728
7: 139,1163,1675,1931,2059,2123,2155,2171,2179,2183,2185,2186
8: 2465,4513,5537,6049,6305,6433,6497,6529,6545,6553,6557,6559,6560
...
A063005
Difference between 2^n and the next smaller or equal power of 3.
Original entry on oeis.org
0, 1, 1, 5, 7, 5, 37, 47, 13, 269, 295, 1319, 1909, 1631, 9823, 13085, 6487, 72023, 84997, 347141, 517135, 502829, 2599981, 3605639, 2428309, 19205525, 24062143, 5077565, 139295293, 149450423, 686321335, 985222181, 808182895, 5103150191, 6719515981, 2978678759
Offset: 0
-
a:= n-> (t-> t-3^ilog[3](t))(2^n):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 11 2019
-
a[n_] := 2^n - 3^Floor[Log[3, 2] * n]; Array[a, 36, 0] (* Amiram Eldar, Nov 19 2021 *)
-
for(n=0,50,print1(2^n-3^floor(log(2^n)/log(3))","))
-
def a(n):
m, p, target = 0, 1, 2**n
while p <= target: m += 1; p *= 3
return target - 3**(m-1)
print([a(n) for n in range(36)]) # Michael S. Branicky, Nov 19 2021
A056850
Minimal absolute difference of 3^n and 2^k.
Original entry on oeis.org
0, 1, 1, 5, 17, 13, 217, 139, 1631, 3299, 6487, 46075, 7153, 502829, 588665, 2428309, 9492289, 5077565, 118985033, 88519643, 808182895, 1870418611, 2978678759, 25423702091, 7551629537, 252223018333, 342842572777, 1170495537221, 5284606410545, 1738366812781
Offset: 0
For n = 4, the closest power of 2 to 3^n = 81 is 2^6 = 64, so a(4) = |3^4 - 2^6| = |81 - 64| = 17. - _Jon E. Schoenfield_, Sep 30 2017
-
Table[Min[# - 2^Floor@ Log2@ # &[3^n], 2^Ceiling@ Log2@ # - # &[3^n]], {n, 0, 27}]
A063003
Difference between 3^n and the next larger or equal power of 2.
Original entry on oeis.org
0, 1, 7, 5, 47, 13, 295, 1909, 1631, 13085, 6487, 84997, 517135, 502829, 3605639, 2428309, 24062143, 5077565, 149450423, 985222181, 808182895, 6719515981, 2978678759, 43295774645, 267326277407, 252223018333, 1856180682775
Offset: 0
-
Table[2^Ceiling@ Log2@ # - # &[3^n], {n, 0, 26}] (* Michael De Vlieger, Sep 30 2017 *)
-
{ default(realprecision, 50); t=1/log(2); for (n=0, 200, write("b063003.txt", n, " ", 2^ceil(t*log(3^n)) - 3^n) ) } \\ Harry J. Smith, Aug 15 2009
A063004
Difference between 2^n and the next larger or equal power of 3.
Original entry on oeis.org
0, 1, 5, 1, 11, 49, 17, 115, 473, 217, 1163, 139, 2465, 11491, 3299, 26281, 111611, 46075, 269297, 7153, 545747, 2685817, 588665, 5960299, 26269505, 9492289, 62031299, 253202761, 118985033, 625390555, 88519643, 1339300753
Offset: 0
-
dp23[n_]:=Module[{t=2^n},3^Ceiling[Log[3,t]]-t]; Array[dp23,40,0] (* Harvey P. Dale, Nov 20 2015 *)
-
for(n=1,50,print1(3^ceil(log(2^n)/log(3))-2^n","))
A098232
Largest power of 2 <= 3^n.
Original entry on oeis.org
1, 2, 8, 16, 64, 128, 512, 2048, 4096, 16384, 32768, 131072, 524288, 1048576, 4194304, 8388608, 33554432, 67108864, 268435456, 1073741824, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 549755813888, 2199023255552, 4398046511104, 17592186044416
Offset: 0
a(4)=64 since 3^4=81 and 64 <= 81 < 128.
A196486
Irregular triangle 3^n-2^m.
Original entry on oeis.org
1, 7, 5, 1, 25, 23, 19, 11, 79, 77, 73, 65, 49, 17, 241, 239, 235, 227, 211, 179, 115, 727, 725, 721, 713, 697, 665, 601, 473, 217, 2185, 2183, 2179, 2171, 2155, 2123, 2059, 1931, 1675, 1163, 139, 6559, 6557, 6553, 6545, 6529, 6497, 6433, 6305, 6049, 5537
Offset: 1
Rows are:
n=1: 1
n=2: 7,5,1
n=3: 25,23,19,11
n=4: 79,77,73,65,49,17
n=5: 241,239,235,227,211,179,115.
-
a196486 n k = a196486_tabf !! (n-1) !! (k-1)
a196486_row n = a196486_tabf !! (n-1)
a196486_tabf = map (tail . reverse) $ tail a227048_tabf
-- Reinhard Zumkeller, Jun 30 2013
-
Flatten[Table[3^k - 2^m, {k, 10}, {m, Floor[Log[2, 3^k]]}]]
A292410
Difference between (2n+1)^2 and highest power of 2 less than or equal to (2n+1)^2.
Original entry on oeis.org
0, 1, 9, 17, 17, 57, 41, 97, 33, 105, 185, 17, 113, 217, 329, 449, 65, 201, 345, 497, 657, 825, 1001, 161, 353, 553, 761, 977, 1201, 1433, 1673, 1921, 129, 393, 665, 945, 1233, 1529, 1833, 2145, 2465, 2793, 3129, 3473, 3825, 89, 457, 833, 1217, 1609, 2009, 2417, 2833, 3257
Offset: 0
a(0) = 1^2 - 2^0 = 0.
a(1) = 3^2 - 2^3 = 1.
a(2) = 5^2 - 2^4 = 9.
a(3) = 7^2 - 2^5 = 17.
a(4) = 9^2 - 2^6 = 17.
-
seq((2*n+1)^2 - 2^ilog2((2*n+1)^2), n=0..100); @ Robert Israel, Oct 19 2017
-
Table[# - 2^Floor@ Log2@ # &[(2 n + 1)^2], {n, 0, 53}] (* Michael De Vlieger, Sep 18 2017 *)
-
a(n) = my(k = 0); while(2^k < (2*n+1)^2, k++); if (k, k--); (2*n+1)^2 - 2^k; \\ Michel Marcus, Sep 16 2017
A292425
The smallest positive number of the form 3^n-2^a-2^b.
Original entry on oeis.org
0, 0, 3, 1, 51, 89, 11, 417, 1251, 9897, 13307, 3057, 21459, 64377, 1765995, 1103681, 28476867, 51876169, 21410779, 265558929, 796676787, 5611255833, 8243832907, 3256662241, 22654888611, 67964665833, 1028527718331, 886559899441, 15853819231635, 29969271650489
Offset: 1
- P. Vojta, Integral points on varieties. Thesis, Harvard, 1983.
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Mo Deze and R. Tijdeman, Exponential diophantine equations with four terms, Indag. Math. N.S. 3 (1992), 47--57.
- R. Tijdeman and Lian Xiang Wang, Sums of products of powers of given prime numbers, Pacific J. Math. 132, (1988), 177--193.
- Tomohiro Yamada, On the diophantine equation x^m=y^n1+y^n2+...+y^nk, Glasgow Math. J. 51 (2009), 143--148.
-
f(x)=x-2^floor(log(x)/log(2)); g(x)=f(f(x)); a(n)=g(3^n)
-
a(n)={my(t=3^n); t-=1<Andrew Howroyd, Dec 23 2019
Showing 1-9 of 9 results.
Comments