cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002235 Numbers m such that 3*2^m - 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[3*2^n-1], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
  • PARI
    is(n)=ispseudoprime(3<Charles R Greathouse IV, Aug 27 2014

Extensions

More terms from Eric W. Weisstein, Sep 29 2007
a(60) = 11484018 from The Prime Pages, from Pierre CAMI, Nov 25 2014
a(61)-a(62) from The Prime Pages, from Eric W. Weisstein, Nov 03 2015
Terms moved from Data to b-file, and more terms added to b-file, by Jeppe Stig Nielsen, Sep 07 2021

A003307 Numbers k such that 2*3^k - 1 is prime.

Original entry on oeis.org

1, 2, 3, 7, 8, 12, 20, 23, 27, 35, 56, 62, 68, 131, 222, 384, 387, 579, 644, 1772, 3751, 5270, 6335, 8544, 9204, 12312, 18806, 21114, 49340, 75551, 90012, 128295, 143552, 147488, 1010743, 1063844, 1360104
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A079363 (primes of the form 2*3^k - 1), A003306 (k such that 2*3^k + 1 is prime).

Programs

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu)
More terms from T. D. Noe, Aug 24 2005
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(35) from Borys Jaworski, Sep 02 2011
a(36) from Borys Jaworski, Feb 13 2012
a(37) from Jeppe Stig Nielsen, Sep 28 2018

A001771 Numbers k such that 7*2^k - 1 is prime.

Original entry on oeis.org

1, 5, 9, 17, 21, 29, 45, 177, 18381, 22529, 24557, 26109, 34857, 41957, 67421, 70209, 169085, 173489, 177977, 363929, 372897
Offset: 1

Views

Author

Keywords

Comments

k is always of the form 4*j + 1.
If k is in the sequence and m=2^(k+2)*3*(7*2^k-1) then phi(m)+sigma(m)=3m (m is in the sequence A011251). The proof is easy. - Farideh Firoozbakht, Mar 04 2005

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[7*2^n - 1], Print[n]], {n, 1, 2500}]
  • PARI
    v=[ ]; for(n=0,2000, if(isprime(7*2^n-1),v=concat(v,n),)); v

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu).
More terms from Hugo Pfoertner, Jun 23 2004

A046865 Numbers k such that 4*5^k - 1 is prime.

Original entry on oeis.org

0, 1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989, 498483, 504221, 754611, 864751
Offset: 1

Views

Author

Keywords

Comments

a(22) > 1000000. - Karsten Bonath, Apr 04 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.

Crossrefs

Programs

  • Mathematica
    Print[0]; Do[ If[ PrimeQ[4*5^n - 1], Print[n]], {n, 1, 8100, 2}]
  • PARI
    is(n)=isprime(4*5^n-1) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Two more terms from Robert G. Wilson v, Jan 16 2003 and Jan 26 2003
a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(1)=0 prepended by Robert Price, Feb 27 2015
a(17) from Karsten Bonath, Dec 07 2018
a(18)-a(19) from Karsten Bonath, Jan 17 2019
a(20)-a(21) from Karsten Bonath, Apr 04 2019

A046867 Numbers n such that 10*11^n -1 is prime.

Original entry on oeis.org

1, 3, 37, 119, 255, 355, 371, 497, 1759, 34863, 50719, 147709
Offset: 1

Views

Author

Keywords

Comments

a(13) > 2*10^5. - Robert Price, Jan 19 2015

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[10*11^n - 1], Print[n]], {n, 1, 2000}]
  • PARI
    is(n)=isprime(10*11^n-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Robert G. Wilson v, Jan 16 2003
a(10)-a(12) from Robert Price, Jan 19 2015

A079906 Numbers k such that 5*6^k - 1 is prime.

Original entry on oeis.org

1, 2, 6, 7, 11, 23, 33, 48, 68, 79, 116, 151, 205, 1016, 1332, 1448, 3481, 3566, 3665, 11233, 13363, 29166, 44358, 58530, 191706, 386450, 605168, 616879, 1204077
Offset: 1

Views

Author

Robert G. Wilson v, Jan 16 2003

Keywords

Comments

a(29) > 618000. - Karsten Bonath, Nov 04 2019

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[5*6^n - 1], Print[n]], {n, 1, 5000}]
  • PARI
    for(n=1,2000, if(isprime(5*6^n-1),print1(n, ", ")))

Extensions

a(20)-a(24) from Donovan Johnson, Nov 26 2008
a(25) from Robert Price, Jan 23 2016
a(26) from Karsten Bonath, Jul 01 2019
a(27) from Karsten Bonath, Oct 29 2019
a(28) from Karsten Bonath, Nov 04 2019
a(29) from Ryan Propper, Nov 21 2023

A079907 Numbers n such that 11*12^n -1 is prime.

Original entry on oeis.org

1, 2, 21, 25, 33, 54, 78, 235, 1566, 2273, 2310, 4121, 7775, 42249, 105974, 138961
Offset: 1

Views

Author

Robert G. Wilson v, Jan 16 2003

Keywords

Comments

a(17) > 2*10^5. - Robert Price, Mar 20 2015

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Magma
    [n: n in [1..600]| IsPrime(11*12^n - 1)]; // Vincenzo Librandi, Mar 21 2015
  • Mathematica
    Do[ If[ PrimeQ[11*12^n - 1], Print[n]], {n, 1, 2000}]
    Select[Range[10000], PrimeQ[(11 12^# - 1)] &] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    for(n=1,2000, if(isprime(11*12^n-1),print1(n, ", ")))
    

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(13)-a(16) from Robert Price, Mar 20 2015

A046866 Numbers k such that 6*7^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 7, 18, 55, 69, 87, 119, 141, 189, 249, 354, 1586, 2135, 2865, 2930, 4214, 7167, 67485, 74402, 79326, 231349
Offset: 1

Views

Author

Keywords

Comments

a(23) > 2*10^5. - Robert Price, Nov 13 2015

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[6*7^n - 1], Print[n]], {n, 0, 5650}]
  • PARI
    for(n=0,2000, if(isprime(6*7^n-1),print1(n, ", ")))

Extensions

One more term from Jason Earls, Jul 21 2001
More terms from Robert G. Wilson v, Jan 17 2003
One more term from Ryan Propper, Jun 05 2006
a(20)-a(22) from Donovan Johnson, Nov 26 2008
First term 0 inserted by Georg Fischer, Aug 01 2019
a(23) from Riley Fisher, Dec 02 2024

A005541 Numbers k such that 8*3^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 10, 17, 50, 170, 184, 194, 209, 641, 1298, 4034, 5956, 7154, 9970, 35956, 42730, 132004, 190610
Offset: 1

Views

Author

Keywords

Comments

a(22) > 2*10^5. - Robert Price, Mar 16 2014
All terms are verified primes (i.e., not probable primes). - Robert Price, Mar 16 2014
896701 is a term, found in 2010 (see link). - Jeppe Stig Nielsen, Jul 31 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu)
0 prepended by Vincenzo Librandi, Sep 26 2012
a(18)-a(21) from Robert Price, Mar 16 2014

A268061 Numbers k such that 7*8^k - 1 is prime.

Original entry on oeis.org

3, 7, 15, 59, 6127, 8703, 11619, 23403, 124299
Offset: 1

Views

Author

Robert Price, Jan 25 2016

Keywords

Comments

a(10) > 2*10^5.
Terms are A001771(n)/3 that are integers.

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Cf. similar sequences of the form k*(k+1)^n-1: A003307 (k=2), ... (k=3), A046865 (k=4), A079906 (k=5), A046866 (k=6), this sequence (k=7), ... (k=8), A056725 (k=9), A046867 (k=10), A079907 (k=11).

Programs

  • Mathematica
    Select[Range[0, 200000], PrimeQ[7*8^# - 1] &]
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(7*8^n-1), print1(n, ", "))) \\ Altug Alkan, Jan 25 2016
Showing 1-10 of 16 results. Next