cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A076078 a(n) is the number of nonempty sets of distinct positive integers that have a least common multiple of n.

Original entry on oeis.org

1, 2, 2, 4, 2, 10, 2, 8, 4, 10, 2, 44, 2, 10, 10, 16, 2, 44, 2, 44, 10, 10, 2, 184, 4, 10, 8, 44, 2, 218, 2, 32, 10, 10, 10, 400, 2, 10, 10, 184, 2, 218, 2, 44, 44, 10, 2, 752, 4, 44, 10, 44, 2, 184, 10, 184, 10, 10, 2, 3748, 2, 10, 44, 64, 10, 218, 2, 44, 10, 218, 2, 3392, 2, 10
Offset: 1

Views

Author

Amarnath Murthy, Oct 05 2002

Keywords

Comments

a(n)=1 iff n=1, a(p^k)=2^k, a(p*q)=10; where p & q are unique primes. a(n) cannot equal an odd number >1. - Robert G. Wilson v
If m has more divisors than n, then a(m) > a(n). - Matthew Vandermast, Aug 22 2004
If n is of the form p^r*q^s where p & q are distinct primes and r & s are nonnegative integers then a(n)=2^(rs)*(2^(r+s+1) -2^r-2^s+1); for example f(1400846643)=f(3^5*7^8)=2^(5*8)*(2^ (5+8+1)-2^5-2^8+1)=17698838672310272. Also if n=p_1^r_1*p_2^r_2*...*p_k^r_k where p_1,p_2,...,p_k are distinct primes and r_1,r_2,...,r_k are natural numbers then 2^(r_1*r_2*...*r_k)||a(n). - Farideh Firoozbakht, Aug 06 2005
None of terms is divisible by Mersenne numbers 3 or 7. For any n, a(n) is congruent to A008836(n) mod 3. Since A008836(n) is always 1 or -1, this implies that A000225(2)=3 never divides a(n). - Matthew Vandermast, Oct 12 2010
There are terms divisible by larger Mersenne numbers. For example, a(2*3*5*7*11*13*19*23^3) is divisible by 31. - Max Alekseyev, Nov 18 2010

Examples

			a(6) = 10. The sets with LCM 6 are {6}, {1,6}, {2,3}, {2,6}, {3,6}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(mobius(n/d)*(2^tau(d)-1), d in divisors(n)), n=1..80); # Ridouane Oudra, Mar 12 2024
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; Table[ f[n], {n, 75}] (* Robert G. Wilson v *)
  • PARI
    a(n) = local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; \\ Definition corrected by David Wasserman, Dec 26 2007

Formula

2^d(n) - 1 = Sum_{m|n} a(m), where d(n) = A000005(n) is the number of divisors of n, so a(n) = Sum_{m|n} mu(n/m)*(2^d(m) - 1).
a(n) = 2*A069626(n), for n > 1. - Ridouane Oudra, Mar 12 2024

Extensions

Edited by Dean Hickerson, Oct 08 2002
Definition corrected by David Wasserman, Dec 26 2007
Edited by Charles R Greathouse IV, Aug 02 2010
Edited by Max Alekseyev, Nov 18 2010

A003307 Numbers k such that 2*3^k - 1 is prime.

Original entry on oeis.org

1, 2, 3, 7, 8, 12, 20, 23, 27, 35, 56, 62, 68, 131, 222, 384, 387, 579, 644, 1772, 3751, 5270, 6335, 8544, 9204, 12312, 18806, 21114, 49340, 75551, 90012, 128295, 143552, 147488, 1010743, 1063844, 1360104
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A079363 (primes of the form 2*3^k - 1), A003306 (k such that 2*3^k + 1 is prime).

Programs

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu)
More terms from T. D. Noe, Aug 24 2005
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(35) from Borys Jaworski, Sep 02 2011
a(36) from Borys Jaworski, Feb 13 2012
a(37) from Jeppe Stig Nielsen, Sep 28 2018

A002253 Numbers k such that 3*2^k + 1 is prime.

Original entry on oeis.org

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353
Offset: 1

Views

Author

Keywords

Comments

From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 614.
  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A039687 for the actual primes.

Programs

  • PARI
    is(n)=isprime(3*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
    
  • PARI
    A2253=[1]; A002253(n)=for(k=#A2253, n-1, my(m=A2253[k]); until(ispseudoprime(3<M. F. Hasler, Mar 03 2023

Formula

a(n) = log_2((A039687(n)-1)/3) = floor(log_2(A039687(n)/3)). - M. F. Hasler, Mar 03 2023

Extensions

Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
a(47) and a(48) from the Ballinger & Keller web page, Joerg Arndt, Apr 07 2013
a(49) from https://t5k.org/primes/page.php?id=116922, Fabrice Le Foulher, Mar 09 2014
Terms moved from Data to b-file (Links), and additional term appended to b-file, by Jeppe Stig Nielsen, Oct 30 2020

A001771 Numbers k such that 7*2^k - 1 is prime.

Original entry on oeis.org

1, 5, 9, 17, 21, 29, 45, 177, 18381, 22529, 24557, 26109, 34857, 41957, 67421, 70209, 169085, 173489, 177977, 363929, 372897
Offset: 1

Views

Author

Keywords

Comments

k is always of the form 4*j + 1.
If k is in the sequence and m=2^(k+2)*3*(7*2^k-1) then phi(m)+sigma(m)=3m (m is in the sequence A011251). The proof is easy. - Farideh Firoozbakht, Mar 04 2005

References

  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[7*2^n - 1], Print[n]], {n, 1, 2500}]
  • PARI
    v=[ ]; for(n=0,2000, if(isprime(7*2^n-1),v=concat(v,n),)); v

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu).
More terms from Hugo Pfoertner, Jun 23 2004

A002254 Numbers k such that 5*2^k + 1 is prime.

Original entry on oeis.org

1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 4687, 5947, 13165, 23473, 26607, 125413, 209787, 240937, 819739, 1282755, 1320487, 1777515
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A050526.

Programs

Extensions

Corrected (removed incorrect term 40937) and added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013

A046865 Numbers k such that 4*5^k - 1 is prime.

Original entry on oeis.org

0, 1, 3, 9, 13, 15, 25, 39, 69, 165, 171, 209, 339, 2033, 6583, 15393, 282989, 498483, 504221, 754611, 864751
Offset: 1

Views

Author

Keywords

Comments

a(22) > 1000000. - Karsten Bonath, Apr 04 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.

Crossrefs

Programs

  • Mathematica
    Print[0]; Do[ If[ PrimeQ[4*5^n - 1], Print[n]], {n, 1, 8100, 2}]
  • PARI
    is(n)=isprime(4*5^n-1) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Two more terms from Robert G. Wilson v, Jan 16 2003 and Jan 26 2003
a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(1)=0 prepended by Robert Price, Feb 27 2015
a(17) from Karsten Bonath, Dec 07 2018
a(18)-a(19) from Karsten Bonath, Jan 17 2019
a(20)-a(21) from Karsten Bonath, Apr 04 2019

A056725 Numbers k such that 9*10^k - 1 is prime.

Original entry on oeis.org

1, 3, 7, 19, 29, 37, 93, 935, 8415, 9631, 11143, 41475, 41917, 48051, 107663, 212903, 223871, 260253, 364521, 383643, 1009567, 1762063
Offset: 1

Views

Author

Robert G. Wilson v, Aug 11 2000

Keywords

Comments

Also numbers k such that 8*10^k + 9*R_k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
1009567 is also a member of this sequence, but its position is presently undetermined: 9 * 10^1009567 - 1 is prime. - Predrag Kurtovic, Sep 19 2016

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 8*10^n + (10^n-1)], Print[n]], {n, 1, 6750, 2}]
  • PARI
    is(n)=isprime(9*10^n-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(16)-a(20) from Kamada data by Robert Price, Oct 19 2014
a(21) from Kamada data by Robert Price, Mar 10 2019
a(22) from Kamada data by Mohammed Yaseen, Jul 18 2021

A007505 Primes of form 3*2^n - 1.

Original entry on oeis.org

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407, 59421121885698253195157962751, 30423614405477505635920876929023
Offset: 1

Views

Author

Keywords

Comments

a(1) = 2, define f(k) = 2k+1, then a(n+1) = least prime fff...(a(n)). After 383 the next terem is 6143. We have f(383) = 767 (composite), f(767) = 1535 (composite), f(1565)=3071(composite), f(3071) = 6143 (prime), hence the next term is 6143= ffff(383). - Amarnath Murthy, Jul 13 2005
If n is in the sequence and m=(n+1)/3 then m is a solution of the equation, sigma(x+sigma(x))=3x (*). Is it true that there is no other solution of (*)? - Farideh Firoozbakht, Dec 05 2005

References

  • H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, pp. 381-384.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A083329.
See A002235 for more terms.
Cf. A039687 (primes of the form 3*2^n+1).
Cf. A010051.

Programs

  • Haskell
    a007505 n = a007505_list !! (n-1)
    a007505_list = filter ((== 1) . a010051') a083329_list
    -- Reinhard Zumkeller, Sep 10 2013
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 3*2^n-1]; // Vincenzo Librandi, Mar 20 2013
    
  • Mathematica
    Reap[For[n = 0, n <= 103, n++, If[PrimeQ[p = 3*2^n - 1], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2012 *)
    Select[Table[3 2^n - 1, {n, 0, 100}], PrimeQ] (* Vincenzo Librandi, Mar 20 2013 *)
  • PARI
    for(n=0,100, if(isprime(t=3<Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = 3*2^A002235(n)-1. - Zak Seidov, Jul 21 2016

A046867 Numbers n such that 10*11^n -1 is prime.

Original entry on oeis.org

1, 3, 37, 119, 255, 355, 371, 497, 1759, 34863, 50719, 147709
Offset: 1

Views

Author

Keywords

Comments

a(13) > 2*10^5. - Robert Price, Jan 19 2015

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[10*11^n - 1], Print[n]], {n, 1, 2000}]
  • PARI
    is(n)=isprime(10*11^n-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Robert G. Wilson v, Jan 16 2003
a(10)-a(12) from Robert Price, Jan 19 2015

A079906 Numbers k such that 5*6^k - 1 is prime.

Original entry on oeis.org

1, 2, 6, 7, 11, 23, 33, 48, 68, 79, 116, 151, 205, 1016, 1332, 1448, 3481, 3566, 3665, 11233, 13363, 29166, 44358, 58530, 191706, 386450, 605168, 616879, 1204077
Offset: 1

Views

Author

Robert G. Wilson v, Jan 16 2003

Keywords

Comments

a(29) > 618000. - Karsten Bonath, Nov 04 2019

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[5*6^n - 1], Print[n]], {n, 1, 5000}]
  • PARI
    for(n=1,2000, if(isprime(5*6^n-1),print1(n, ", ")))

Extensions

a(20)-a(24) from Donovan Johnson, Nov 26 2008
a(25) from Robert Price, Jan 23 2016
a(26) from Karsten Bonath, Jul 01 2019
a(27) from Karsten Bonath, Oct 29 2019
a(28) from Karsten Bonath, Nov 04 2019
a(29) from Ryan Propper, Nov 21 2023
Showing 1-10 of 38 results. Next