cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274676 Numbers k such that 7*10^k + 13 is prime.

Original entry on oeis.org

1, 3, 9, 12, 18, 19, 36, 37, 49, 67, 337, 893, 1924, 8044, 11610, 13560, 18777, 35376, 53601, 56022, 66488, 89801, 190210
Offset: 1

Views

Author

Vincenzo Librandi, Jul 03 2016

Keywords

Comments

a(15) > 10000. - Felix Fröhlich, Jul 03 2016

Examples

			3 is in this sequence because 7*10^3 + 13 = 7013 is prime.
4 is not in the sequence because 7*10^4 + 13 = 70013 = 53 * 1321.
Initial terms and associated primes:
a(1) =  1: 83;
a(2) =  3: 7013;
a(3) =  9: 7000000013;
a(4) = 12: 7000000000013, etc.
		

Crossrefs

Cf. numbers k such that 7*10^k + m is prime: A056804 (m=1), A097970 (m=3), A097954 (m=9), this sequence (m=13), A274677 (m=19), A274678 (m=27), A111021 (m=31), A274679 (m=33), A274700 (m=37), A274692 (m=43), A270974 (m=57).

Programs

  • Magma
    [n: n in [1..800] | IsPrime(7*10^n+13)];
    
  • Maple
    select(t -> isprime(7*10^t+13), [$1..2000]); # Robert Israel, Jul 03 2016
  • Mathematica
    Select[Range[0, 3000], PrimeQ[7 * 10^# + 13] &]
  • PARI
    is(n) = ispseudoprime(7*10^n+13) \\ Felix Fröhlich, Jul 03 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(7*10^n+13), print1(n, ", "))); \\ Altug Alkan, Jul 03 2016

Extensions

a(15) from Michael S. Branicky, Jan 22 2023
a(16)-a(17) from Michael S. Branicky, Apr 10 2023
a(18)-a(23) from Kamada data by Tyler Busby, Apr 15 2024

A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits.

Original entry on oeis.org

11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
Offset: 1

Views

Author

Burak Muslu, Sep 10 2021

Keywords

Examples

			97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
		

Crossrefs

Subsequence of A209871.
A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences.

Programs

  • Maple
    select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # Robert Israel, Mar 05 2024
  • Mathematica
    Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
  • PARI
    isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
  • Python
    from sympy import primerange
    def ok(p): return p%sum(map(int, str(p))) == 1
    print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021
    

A101128 Indices of primes in sequence defined by A(0) = 71, A(n) = 10*A(n-1) - 9 for n > 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 44, 135, 141, 157, 242, 922, 1234, 2195, 4649, 6118, 7323, 9542, 13493, 20309, 20359, 232919, 830864, 902707
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004

Keywords

Comments

Numbers n such that 70*10^n + 1 is prime.
Numbers n such that digit 7 followed by n >= 0 occurrences of digit 0 followed by digit 1 is prime.
Numbers corresponding to terms <= 922 are certified primes.

Examples

			700001 is prime, hence 4 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • PARI
    a=71;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-9)
    
  • PARI
    for(n=0,1500,if(isprime(70*10^n+1),print1(n,",")))

Formula

a(n) = A056804(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(21)-a(25) from Kamada data by Ray Chandler, Apr 29 2015

A109713 Numbers n such that 99 * 10^n + 1 is prime.

Original entry on oeis.org

1, 2, 4, 8, 16, 20, 24, 72, 200, 359, 454, 624, 1054, 2060, 6301, 8083, 8407, 13159, 65059, 74957
Offset: 1

Views

Author

Jason Earls, Aug 08 2005

Keywords

Comments

Terms < 21000 have been certified. Primality proof for 13159: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 99*10^13159+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 17 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 99*10^13159+1 is prime! (29.5646s+0.0028s) [Comment edited by N. J. A. Sloane, Jan 28 2025]

Examples

			For n=8 we have 99*10^8+1 = 9900000001, which is prime.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Herman Jamke, Jan 13 2008
a(19)-a(20) from Kamada data by Tyler Busby, Apr 16 2024

A109749 Numbers n such that 88 * 10^n + 1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 18, 30, 82, 99, 105, 106, 147, 334, 1092, 1221, 3705, 5524, 30355, 35962
Offset: 1

Views

Author

Jason Earls, Aug 11 2005

Keywords

Comments

All terms have been certified. Primality proof for the largest: PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing 88*10^30355+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 69.89% 88*10^30355+1 is prime! (491.3713s+0.8690s)

Crossrefs

Programs

Extensions

a(18) from Kamada data by Tyler Busby, Apr 16 2024

A171612 Integers n such that (25*10^n)+1 is prime.

Original entry on oeis.org

1, 8, 255, 320, 609, 688, 1436, 3271, 3921, 6520, 19604, 38348, 63531
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Dec 13 2009

Keywords

Comments

No others less than 20000.
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "25001".

Examples

			For n=8 we have (25*10^8)+1 = 25*100000000+1 = 2500000000+1 = 2500000001, which is prime.
		

Crossrefs

Extensions

Edited by Ray Chandler, Dec 23 2010
a(12)-a(13) from Kamada data by Tyler Busby, May 03 2024

A294396 Numbers k such that 12*10^k + 1 is prime.

Original entry on oeis.org

0, 2, 38, 80, 9230, 25598, 39500
Offset: 1

Views

Author

Patrick A. Thomas, Feb 12 2018

Keywords

Comments

k must be even since 12*10^k + 1 is divisible by 11 if k is odd. - Robert G. Wilson v, Feb 12 2018
a(7) > 27440. - Robert G. Wilson v, Feb 17 2018
a(8) > 10^5. - Jeppe Stig Nielsen, Jan 31 2023

Examples

			13 and 1201 are prime, so 0 and 2 are the initial values.
		

Crossrefs

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[12*10^# +1], #, Nothing] &, 2 + 6Range@ 4500] (* Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    isok(k) = isprime(12*10^k + 1); \\ Altug Alkan, Mar 04 2018

Extensions

a(5) from Robert G. Wilson v, Feb 12 2018
a(6) from Robert G. Wilson v, Feb 13 2018
a(7) from Jeppe Stig Nielsen, Jan 28 2023
Showing 1-7 of 7 results.