cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A066601 a(n) = 3^n mod n.

Original entry on oeis.org

0, 1, 0, 1, 3, 3, 3, 1, 0, 9, 3, 9, 3, 9, 12, 1, 3, 9, 3, 1, 6, 9, 3, 9, 18, 9, 0, 25, 3, 9, 3, 1, 27, 9, 12, 9, 3, 9, 27, 1, 3, 15, 3, 37, 18, 9, 3, 33, 31, 49, 27, 29, 3, 27, 12, 9, 27, 9, 3, 21, 3, 9, 27, 1, 48, 3, 3, 13, 27, 39, 3, 9, 3, 9, 57
Offset: 1

Views

Author

Amarnath Murthy, Dec 22 2001

Keywords

Examples

			a(7) = 3 as 3^7 = 2187 = 7*312 + 3.
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), this sequence (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(3^n,n),n=1..75); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[3, n, n], {n, 75}]
  • PARI
    a(n) = { lift(Mod(3, n)^n) } \\ Harry J. Smith, Mar 09 2010
    
  • Python
    def A066601(n): return pow(3,n,n) # Chai Wah Wu, Aug 24 2023

Extensions

More terms from Robert G. Wilson v, Dec 27 2001

A066438 a(n) = 7^n mod n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 0, 1, 1, 9, 7, 1, 7, 7, 13, 1, 7, 1, 7, 1, 7, 5, 7, 1, 7, 23, 1, 21, 7, 19, 7, 1, 13, 15, 28, 1, 7, 11, 31, 1, 7, 7, 7, 25, 37, 3, 7, 1, 0, 49, 37, 9, 7, 1, 43, 49, 1, 49, 7, 1, 7, 49, 28, 1, 37, 37, 7, 21, 67, 49, 7, 1, 7, 49, 43, 45, 28, 25, 7, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n; A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), this sequence (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(7^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[7, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(7, n)^n) } \\ Harry J. Smith, Feb 14 2010

A066603 a(n) = 5^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 5, 1, 8, 5, 5, 1, 5, 11, 5, 1, 5, 1, 5, 5, 20, 3, 5, 1, 0, 25, 26, 9, 5, 25, 5, 1, 26, 25, 10, 1, 5, 25, 8, 25, 5, 1, 5, 9, 35, 25, 5, 1, 19, 25, 23, 1, 5, 1, 45, 25, 11, 25, 5, 25, 5, 25, 62, 1, 5, 49, 5, 13, 56, 65, 5, 1, 5, 25, 50, 17, 3, 25, 5, 65, 80, 25, 5, 1, 65
Offset: 1

Views

Author

Amarnath Murthy, Dec 22 2001

Keywords

Examples

			a(7) = 5 as 5^7 = 78125 = 7*11160 + 5.
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), this sequence (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(5^n,n),n=1..85); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[5, n, n], {n, 85} ]
  • PARI
    a(n) = { lift(Mod(5, n)^n) } \\ Harry J. Smith, Mar 09 2010

Extensions

More terms from Robert G. Wilson v, Dec 27 2001

A066441 a(n) = 11^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 1, 11, 9, 11, 1, 11, 1, 11, 1, 8, 11, 11, 1, 1, 17, 26, 25, 11, 1, 11, 1, 11, 19, 16, 1, 11, 7, 5, 1, 11, 1, 11, 33, 26, 29, 11, 1, 18, 1, 5, 29, 11, 1, 11, 9, 20, 5, 11, 1, 11, 59, 8, 1, 46, 55, 11, 21, 20, 11, 11, 1, 11, 47, 26, 49, 44, 25, 11, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), this sequence (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(11^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[11, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(11, n)^n) } \\ Harry J. Smith, Feb 14 2010

A060154 Table T(n,k) by antidiagonals of n^k mod k [n,k >= 1].

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 1, 4, 3, 0, 2, 0, 0, 1, 2, 3, 4, 1, 0, 1, 0, 1, 0, 3, 4, 0, 0, 1, 0, 0, 1, 8, 1, 4, 1, 1, 1, 2, 1, 0, 1, 4, 0, 0, 5, 0, 2, 0, 0, 0, 0, 1, 2, 9, 1, 1, 6, 1, 3, 1, 1, 1, 0, 1, 4, 3, 6, 8, 0, 0, 4, 4, 0, 2, 0, 0, 1, 2, 9, 4, 5, 0, 1, 1, 3, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Examples

			T(5,3) = 5^3 mod 3 = 125 mod 3 = 2.
Rows start:
  0, 1, 1, 1, 1, ...
  0, 0, 2, 0, 2, ...
  0, 1, 0, 1, 3, ...
  0, 0, 1, 0, 4, ...
  0, 1, 2, 1, 0, ...
		

Crossrefs

Rows include A057427, A015910, A056969.
Columns include A000004, A000035 (several times), A010872, A010874, A010876, A021559 and other periodic sequences.
Diagonals include A000004 and A057427.
Cf. A114448.

Formula

T(n, k) = A051129(n, k)-n*A060155(n, k).

A060156 a(n) = floor(10^n/n).

Original entry on oeis.org

10, 50, 333, 2500, 20000, 166666, 1428571, 12500000, 111111111, 1000000000, 9090909090, 83333333333, 769230769230, 7142857142857, 66666666666666, 625000000000000
Offset: 1

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Examples

			a(6) = floor(1000000/6) = 166666.
		

Crossrefs

Programs

  • PARI
    { default(realprecision, 10); for (n=1, 200, write("b060156.txt", n, " ", floor(10^n/n)); ) } \\ Harry J. Smith, Jul 02 2009

Formula

a(n) = (A011557(n) - A056969(n))/n.

A121912 Numbers k such that 10^k == 10 (mod k).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 15, 17, 18, 19, 23, 29, 30, 31, 33, 37, 41, 43, 45, 47, 53, 55, 59, 61, 67, 71, 73, 79, 83, 89, 90, 91, 97, 99, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 165, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Zak Seidov, Sep 02 2006

Keywords

Comments

By Fermat, all primes are members.
Numbers k not divisible by 4 or 25 such that the multiplicative order of 10 mod (k/gcd(k,10)) divides k-1. - Robert Israel, Feb 10 2019
10^2^k + 1, 10^5^k + 1 and 10^10^k + 1 are terms for k >= 0. - Jinyuan Wang, Feb 11 2019

Examples

			13 is a term because 10^13 = 13*769230769230 + 10.
		

Crossrefs

Cf. A056969 (10^n modulo n), A121014 (Nonprime terms in A121912).

Programs

  • Maple
    filter:= n -> (10 &^ n - 10 mod n = 0):
    select(filter, [$1..1000]); # Robert Israel, Feb 10 2019
  • Mathematica
    Select[Range[250], PowerMod[10, #, # ] == Mod[10, # ] &] (* Ray Chandler, Sep 02 2006 *)
  • PARI
    is(n) = Mod(10, n)^n == Mod(10, n) \\ Jinyuan Wang, Feb 11 2019

A056968 10^(n-1) modulo n.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 1, 0, 1, 0, 1, 4, 1, 10, 10, 0, 1, 10, 1, 0, 16, 10, 1, 16, 0, 10, 19, 20, 1, 10, 1, 0, 1, 10, 25, 28, 1, 10, 22, 0, 1, 40, 1, 32, 10, 10, 1, 16, 8, 0, 49, 12, 1, 46, 45, 24, 43, 10, 1, 40, 1, 10, 37, 0, 55, 10, 1, 48, 31, 20, 1, 64, 1, 10, 25, 12, 67, 4, 1, 0, 73, 10, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2000

Keywords

Examples

			a(6)=4 since 100000=6*16666+4
		

Crossrefs

Programs

  • Maple
    0, seq(10&^(n-1) mod n, n=2..100); # Robert Israel, Nov 25 2024
  • Mathematica
    Table[PowerMod[10,n-1,n],{n,100}] (* Harvey P. Dale, Jul 17 2021 *)

Formula

If n is of form 2^i*5^j then a(n)=0, otherwise a(n)=10^(n-1)+n-A053041(n)
From Robert Israel, Nov 25 2024: (Start)
If n is prime other than 2 or 5, then a(n) = 1.
If n = 2^i * 5^j * p where p is a prime > 10^(2^i * 5^j), then a(n) = 10^(2^i * 5^j).
If n = 2^i * 5^j * p where p is a prime and
2^(2^i * 5^j - 1 - i) * 5^(2^i * 5^j -1 - j) > p > 2^(2^i * 5^j-2 - u) * 5^(2^i * 5^j-1-j),
then a(n) = 10^(2^i * 5^j - 1) - 2^i * 5^j * p.
For example, with i = 0 and j = 1 we get a(5*p) = 10^4 - 5*p if p is a prime between 1000 and 2000.
(End)

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007

A293907 Numbers n for which 10^n mod n = 2^k for some positive integer k.

Original entry on oeis.org

6, 12, 14, 24, 28, 34, 46, 48, 52, 56, 68, 72, 84, 92, 96, 112, 117, 123, 126, 136, 144, 168, 186, 192, 204, 208, 224, 228, 249, 252, 266, 272, 288, 328, 336, 356, 372, 384, 392, 408, 416, 448, 464, 488, 498, 504, 516
Offset: 1

Views

Author

Björn Ch. Buchli, Oct 19 2017

Keywords

Comments

Odd numbers in this sequence: 117, 123, 249, 747, 4043, 5031, 11573, 12129, 14481, 29489, 34719, 35549, 84123, 124631, 173329, 217391, 266799, 458523, 472173, 490561, 551759, 658499, 675431, 721773, 800397, 1375569, 1917843, 2300079, 3194787, 3394893, 4236747, 5031039, 5043957, 5169333, ....

Examples

			For n = 6, 10^6 mod 6 = 4 = 2^2;
For n = 14, 10^14 mod 14 = 2 = 2^1;
For n = 84, 10^84 mod 84 = 64 = 2^6;
For n = 272, 10^272 mod 272 = 256 = 2^8.
		

Crossrefs

Cf. A056969 (10^n modulo n).

Programs

  • Mathematica
    pm2Q[n_]:=Module[{c=PowerMod[10,n,n]},c>1&&IntegerQ[Log2[c]]]; Select[ Range[600],pm2Q] (* Harvey P. Dale, Mar 29 2023 *)
  • PARI
    is(n)=my(k=lift(Mod(10,n)^n)); k>1 && k>>valuation(k,2)==1 \\ Charles R Greathouse IV, Oct 19 2017

Extensions

More terms from Michel Marcus, Oct 19 2017
Showing 1-10 of 10 results.