cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A066601 a(n) = 3^n mod n.

Original entry on oeis.org

0, 1, 0, 1, 3, 3, 3, 1, 0, 9, 3, 9, 3, 9, 12, 1, 3, 9, 3, 1, 6, 9, 3, 9, 18, 9, 0, 25, 3, 9, 3, 1, 27, 9, 12, 9, 3, 9, 27, 1, 3, 15, 3, 37, 18, 9, 3, 33, 31, 49, 27, 29, 3, 27, 12, 9, 27, 9, 3, 21, 3, 9, 27, 1, 48, 3, 3, 13, 27, 39, 3, 9, 3, 9, 57
Offset: 1

Views

Author

Amarnath Murthy, Dec 22 2001

Keywords

Examples

			a(7) = 3 as 3^7 = 2187 = 7*312 + 3.
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), this sequence (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(3^n,n),n=1..75); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[3, n, n], {n, 75}]
  • PARI
    a(n) = { lift(Mod(3, n)^n) } \\ Harry J. Smith, Mar 09 2010
    
  • Python
    def A066601(n): return pow(3,n,n) # Chai Wah Wu, Aug 24 2023

Extensions

More terms from Robert G. Wilson v, Dec 27 2001

A056969 a(n) = 10^n modulo n.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 10, 4, 10, 2, 10, 0, 10, 10, 10, 0, 13, 12, 10, 16, 0, 22, 1, 4, 10, 10, 10, 0, 10, 32, 5, 28, 10, 24, 25, 0, 10, 22, 10, 12, 10, 8, 10, 16, 31, 0, 31, 16, 10, 28, 10, 16, 31, 42, 10, 40, 10, 38, 55, 0, 30, 34, 10, 4, 34, 60, 10, 64, 10, 26, 25, 44, 54, 40
Offset: 1

Views

Author

Henry Bottomley, Jul 20 2000

Keywords

Examples

			a(7) = 3 since 10000000 = 7*1428571+3
		

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), this sequence (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(10^n,n),n=1..78); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[10, n, n], {n, 80} ]
  • PARI
    a(n) = lift(Mod(10, n)^n); \\ Michel Marcus, Oct 19 2017

Formula

a(n) = 10*A056968(n) mod n = A011557(n) mod n.

A066438 a(n) = 7^n mod n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 0, 1, 1, 9, 7, 1, 7, 7, 13, 1, 7, 1, 7, 1, 7, 5, 7, 1, 7, 23, 1, 21, 7, 19, 7, 1, 13, 15, 28, 1, 7, 11, 31, 1, 7, 7, 7, 25, 37, 3, 7, 1, 0, 49, 37, 9, 7, 1, 43, 49, 1, 49, 7, 1, 7, 49, 28, 1, 37, 37, 7, 21, 67, 49, 7, 1, 7, 49, 43, 45, 28, 25, 7, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n; A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), this sequence (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), A066441 (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(7^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[7, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(7, n)^n) } \\ Harry J. Smith, Feb 14 2010

A066441 a(n) = 11^n mod n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 1, 11, 9, 11, 1, 11, 1, 11, 1, 8, 11, 11, 1, 1, 17, 26, 25, 11, 1, 11, 1, 11, 19, 16, 1, 11, 7, 5, 1, 11, 1, 11, 33, 26, 29, 11, 1, 18, 1, 5, 29, 11, 1, 11, 9, 20, 5, 11, 1, 11, 59, 8, 1, 46, 55, 11, 21, 20, 11, 11, 1, 11, 47, 26, 49, 44, 25, 11, 1
Offset: 1

Views

Author

Robert G. Wilson v, Dec 27 2001

Keywords

Crossrefs

Cf. k^n mod n: A015910 (k=2), A066601 (k=3), A066602 (k=4), A066603 (k=5), A066604 (k=6), A066438 (k=7), A066439 (k=8), A066440 (k=9), A056969 (k=10), this sequence (k=11), A066442 (k=12), A116609 (k=13).

Programs

  • Maple
    seq(irem(11^n,n),n=1..80); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[PowerMod[11, n, n], {n, 80} ]
  • PARI
    a(n) = { lift(Mod(11, n)^n) } \\ Harry J. Smith, Feb 14 2010

A277348 Positive integers n such that n | (5^n + 6).

Original entry on oeis.org

1, 11, 341, 581337017, 7202608727, 27146455379, 1358496201131, 9843739213499, 172392038905691
Offset: 1

Views

Author

Seiichi Manyama, Oct 10 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Oct 17 2016

Examples

			5^11 + 6 = 48828131 = 11 * 4438921, so 11 is a term.
		

Crossrefs

Cf. A066603.
Cf. Solutions to 5^n == k (mod n): this sequence (k=-6), A015891 (k=-5), A123047 (k=-4), A123052 (k=-3), A123062 (k=-2), A015951 (k=-1), A067946 (k=1), A124246 (k=2), A123061 (k=3), A125949 (k=4), A123091 (k=5), A277350 (k=6).

Programs

  • PARI
    isok(n) = Mod(5, n)^n == -6; \\ Michel Marcus, Oct 10 2016

Formula

A066603(a(n)) = a(n) - 6 for n > 1.

Extensions

a(5)-a(9) from Max Alekseyev, Oct 17 2016

A096385 a(n) = smallest prime p with p^n mod n = 1.

Original entry on oeis.org

3, 7, 3, 11, 5, 29, 3, 7, 11, 23, 5, 53, 13, 31, 3, 103, 5, 191, 3, 37, 23, 47, 5, 11, 53, 7, 13, 59, 11, 311, 3, 67, 67, 71, 5, 149, 37, 61, 3, 83, 5, 173, 23, 31, 47, 283, 5, 29, 11, 103, 5, 107, 5, 31, 13, 7, 59, 709, 7, 367, 61, 37, 3, 131, 23, 269, 13, 139, 29, 569
Offset: 2

Views

Author

Reinhard Zumkeller, Aug 05 2004

Keywords

Examples

			n=5: 2^5=32=5*6+2, 3^5=243=5*48+3, 5^5 mod 5 = 0, 7^5=16807=5*3361+2, 11^5=161051=5*32210+1: a(5)=11.
		

Crossrefs

Programs

  • Mathematica
    With[{prs=Prime[Range[200]]},Table[SelectFirst[prs,PowerMod[#,n,n]==1&],{n,2,80}]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Aug 31 2015 *)
  • PARI
    a(n) = my(p=2); while (Mod(p,n)^n !=1, p=nextprime(p+1)); p; \\ Michel Marcus, Feb 07 2021

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007

A297967 a(n) = 5^n mod prime(n).

Original entry on oeis.org

1, 1, 0, 2, 1, 12, 10, 4, 11, 20, 25, 10, 39, 36, 41, 13, 36, 58, 52, 1, 17, 26, 19, 64, 13, 5, 94, 14, 25, 36, 40, 74, 117, 81, 6, 123, 24, 155, 134, 117, 20, 42, 69, 36, 185, 111, 121, 16, 206, 159, 42, 220, 47, 123, 130, 61, 57, 83, 6, 79, 270, 14, 91
Offset: 1

Views

Author

Vincenzo Librandi, Jan 15 2018

Keywords

Crossrefs

Programs

  • Magma
    [Modexp(5, n, NthPrime(n)): n in [1..80]];
  • Mathematica
    Array[PowerMod[5, #, Prime@#]&, 80]

Formula

a(n) = A000351(n) mod A000040(n).
Showing 1-8 of 8 results.