cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A083550 Product of 2 consecutive prime differences of two successive terms of A001223.

Original entry on oeis.org

2, 4, 8, 8, 8, 8, 8, 24, 12, 12, 24, 8, 8, 24, 36, 12, 12, 24, 8, 12, 24, 24, 48, 32, 8, 8, 8, 8, 56, 56, 24, 12, 20, 20, 12, 36, 24, 24, 36, 12, 20, 20, 8, 8, 24, 144, 48, 8, 8, 24, 12, 20, 60, 36, 36, 12, 12, 24, 8, 20, 140, 56, 8, 8, 56, 84, 60, 20, 8, 24, 48, 48, 36, 24, 24, 48
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x]
    Table[f[w+1]*f[w], {w, 1, 128}]

Formula

a(n) = A001223(n)*A001223(n+1) = (prime(n+1)-prime(n))*(prime(n+2)-prime(n+1)).

A083551 Least common multiple of 2 consecutive prime differences, of two successive terms of A001223.

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 4, 12, 6, 6, 12, 4, 4, 12, 6, 6, 6, 12, 4, 6, 12, 12, 24, 8, 4, 4, 4, 4, 28, 28, 12, 6, 10, 10, 6, 6, 12, 12, 6, 6, 10, 10, 4, 4, 12, 12, 12, 4, 4, 12, 6, 10, 30, 6, 6, 6, 6, 12, 4, 10, 70, 28, 4, 4, 28, 42, 30, 10, 4, 12, 24, 24, 6, 12, 12, 24, 8, 8, 40, 10, 10, 10, 6, 12
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x];  Table[LCM[f[w+1], f[w]], {w, 1, 128}]
    Table[LCM[(Prime[n + 1] - Prime[n]), Prime[n + 2] - Prime[n + 1]], {n, 100}] (* Vincenzo Librandi, Mar 15 2018 *)
    LCM@@#&/@Partition[Differences[Prime[Range[90]]],2,1] (* Harvey P. Dale, Oct 11 2020 *)

Formula

a(n) = lcm(A001223(n), A001223(n+1)).

A083552 Quotient when LCM of 2 consecutive prime differences is divided by GCD of the same two differences.

Original entry on oeis.org

2, 1, 2, 2, 2, 2, 2, 6, 3, 3, 6, 2, 2, 6, 1, 3, 3, 6, 2, 3, 6, 6, 12, 2, 2, 2, 2, 2, 14, 14, 6, 3, 5, 5, 3, 1, 6, 6, 1, 3, 5, 5, 2, 2, 6, 1, 3, 2, 2, 6, 3, 5, 15, 1, 1, 3, 3, 6, 2, 5, 35, 14, 2, 2, 14, 21, 15, 5, 2, 6, 12, 12, 1, 6, 6, 12, 2, 2, 20, 5, 5, 5, 3, 6, 6, 12, 2, 2, 2, 3, 6, 2, 2, 2, 6, 2, 6, 9
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

Conjecture: Every positive integer appears infinitely many times in this sequence. Example: a(834) = a(909) = ... = a(9901) = ... = 4. - Jerzy R Borysowicz, Dec 22 2018
All terms of this sequence are integers because gcd(r,s) divides lcm(r,s) for any r and s. - Jerzy R Borysowicz, Jan 05 2019

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
  • PARI
    a(n) = my(da=prime(n+2)-prime(n+1), db=prime(n+1)-prime(n)); lcm(da, db)/gcd(da, db) \\ Felix Fröhlich, Jan 05 2019

Formula

a(n) = lcm(A001223(n), A001223(n+1))/gcd(A001223(n), A001223(n+1));
a(n) = A083551(n)/A057467(n).

A054682 a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) is a multiple of 2n.

Original entry on oeis.org

3, 89, 47, 1823, 1627, 199, 5939, 5591, 15823, 83117, 259033, 16763, 365851, 1074167, 69593, 1625027, 2541289, 255767, 11772613, 3312227, 247099, 23374859, 25767389, 3565931, 21369059, 15340943, 6314393, 59859131, 101996837, 4911251, 70136597, 166185431, 12012677, 198429983, 247837313, 23346737, 298626077, 1321272031, 43607351, 464208809
Offset: 1

Views

Author

Jeff Burch, Apr 18 2000

Keywords

Crossrefs

Different from A070018.

Programs

  • PARI
    for(n=1,50,p=2: np=3: while((np-p)%(2*n)||(nextprime(np+2)-np)%(2*n),p=np: np=nextprime(np+2)): print1(p","))

Formula

a(n)=Min{x : A057467(x) is a multiple of 2n}

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
Corrected and extended by Ralf Stephan, Feb 23 2004
More terms from Olaf Voß, Feb 17 2008

A070010 GCD of consecutive values of sum-of-proper divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 11, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 23, 1, 1, 1, 1, 3, 1, 1, 5, 25, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Apr 11 2002

Keywords

Crossrefs

Cf. A000203, A001065; GCD of various consecutive function values: A048586, A057467, A058515, A060778, A060780, A069896.

Programs

Formula

a(n) = gcd(A001065(n+1), A001065(n)).

A070018 a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) = 2n.

Original entry on oeis.org

3, 89, 47, 1823, 1627, 199, 5939, 5591, 15823, 83117, 259033, 16763, 365851, 1074167, 69593, 1625027, 2541289, 255767, 11772613, 3312227, 247099, 23374859, 25767389, 3565931, 21369059, 15340943, 6314393, 59859131, 101996837, 4911251, 70136597, 166185431, 12012677, 198429983, 247837313, 23346737, 298626077
Offset: 1

Views

Author

Labos Elemer and Benoit Cloitre, Apr 12 2002

Keywords

Examples

			n=21: a(21)=247099, the consecutive prime triple {247099,247141,247183} determines {42,42} successive differences, the GCD of which is 2n=42.
		

Crossrefs

Different from A054682?

Programs

  • Mathematica
    f[x_] := GCD[Prime[x+1]-Prime[x], Prime[x+2]-Prime[x+1]]; t = Table[0, {256} ]; Do[ c = f[n]; If[c <257 && t[[b]] == 0, t[[c]] = n], {n, 2, 1000000} ]; t Prime[t]
  • PARI
    fp(n, vp) = {for (k=1, #vp-2, if (gcd(vp[k+1] - vp[k], vp[k+2] - vp[k+1]) == 2*n, return (vp[k])););}
    lista(nn) = {my(vp = primes(10000)); for (n=1, nn, my(p = fp(n, vp)); if (p, print1(p, ", "), break););} \\ Michel Marcus, Aug 29 2019

Formula

a(n) = Min{x : A057467(x)=2n}.

Extensions

Corrected and extended by Michel Marcus, Aug 29 2019
Showing 1-6 of 6 results.