cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A104358 Smallest prime factor of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 5, 11, 59, 179, 1259, 11, 7559, 37799, 415799, 71, 227, 5981, 9067, 1135133999, 11717, 61, 79, 5499724229999, 97, 1543, 31, 29220034833989999, 8937119, 181, 401, 124759, 443851, 31, 2141, 3082663, 8191, 37230797, 1697, 1408101540804746673385499999, 10613, 73, 59, 107, 79, 617, 163, 173
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

a(n) = A020639(A104357(n)).

Crossrefs

Extensions

Typo in data corrected by Gionata Neri, Oct 20 2017

A065314 Smallest prime divisor of (n-th primorial - (n+1)-st prime).

Original entry on oeis.org

23, 199, 2297, 30013, 41, 9699667, 2819, 53, 21701, 79, 163, 181, 61, 1619, 14669, 307, 103, 306091, 907, 3217644767340672907899084554047, 267064515689275851355624017992701, 23768741896345550770650537601358213
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger[Times @@ #1 - #2][[1, 1, 1]] & @@ Reverse@ TakeDrop[#, -1] &, Drop[#, 3] &@ FoldList[Flatten@ Append[{#1}, #2] &, Prime@ Range@ 25]] (* Michael De Vlieger, Jul 16 2017 *)
  • PARI
    a(n) = vecmin(factor(prod(k=1, n, prime(k)) - prime(n+1))[,1]); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = A020639( A002110(n) - A000040(n+1) ).

A065315 Smallest prime divisor of n-th primorial + (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 13, 23, 30047, 510529, 9699713, 127, 107, 433, 1093, 375569, 13082761331670077, 941879, 32589158477190044789, 1922760350154212639131, 4129, 92388407, 5879, 40729680599249024150621323549, 1783, 4903, 10279098043, 191, 131, 109, 163, 337, 20261, 673327, 6599, 181
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, prime(4)=7, sum=37, so a(3)=37.
		

Crossrefs

Programs

  • PARI
    a(n) = vecmin(factor(prod(i=1, n, prime(i)) + prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A020639(A002110(n) + A000040(n+1)).
a(n) = A020639(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

More terms from Michel Marcus, Aug 29 2019

A065316 Largest prime divisor of n-th primorial - (n+1)-st prime.

Original entry on oeis.org

23, 199, 2297, 30013, 12451, 9699667, 79139, 122069683, 9241993, 77184383, 211941187, 72280449346243, 73629553, 142226610221, 131076443530861861, 382046844818915214929, 1348764323657, 1822793973448088839487, 217379667530071, 3217644767340672907899084554047, 267064515689275851355624017992701
Offset: 3

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n=3, 3rd primorial=30, 4th prime=7, difference=23, so a(3)=23.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,pmrl},pmrl=FoldList[Times,Prime[Range[nn]]];FactorInteger[ #][[-1,1]]&/@(Drop[#[[1]]-#[[2]]&/@Thread[ {pmrl,Prime[ Range[ 2,nn+1]]}],2])] (* Harvey P. Dale, Dec 30 2021 *)
  • PARI
    a(n) = vecmax(factor(prod(i=1, n, prime(i)) - prime(n+1))[,1]); \\ Michel Marcus, Aug 29 2019

Formula

a(n) = A006530(A002110(n)-A000040(n+1)).

Extensions

More terms from Michel Marcus, Aug 29 2019

A065317 Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.

Original entry on oeis.org

5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},FactorInteger[#][[-1,1]]&/@(Total/@Thread[{FoldList[ Times,Prime[Range[nn]]],Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023

Extensions

Name clarified by Felix Fröhlich, May 26 2022

A068489 m for which prime(m) is the least prime dividing #prime(n) - 1, i.e., one less than primorial n-th prime (A057588).

Original entry on oeis.org

3, 10, 5, 343, 3248, 18, 16, 12, 22, 20324, 50, 9414916809095, 13120, 43, 8481, 1200361259, 196, 38, 10326732314, 65, 38, 34
Offset: 2

Views

Author

Lekraj Beedassy, Mar 11 2002

Keywords

Comments

Since #P13 - 1 is a prime, see A006794, we need the number of primes less than or equal to #P13 - 1. The sequence continues, for n=14 to 23: 13120, 43, 8481, 1200361259, 196, 38, 10326732314, 65, 38, 34.
a(24) = pi(23768741896345550770650537601358309). - Donovan Johnson, Dec 08 2009

Crossrefs

Programs

  • Mathematica
    Do[ Print[ PrimePi[ FactorInteger[ Product[ Prime[k], {k, 1, n}] - 1] [[1, 1]]]], {n, 2, 22} ]

Formula

a(n) = A000720(A057713(n)).

Extensions

Edited and extended by Robert G. Wilson v, Mar 12 2002
a(13) from Donovan Johnson, Dec 08 2009
Showing 1-6 of 6 results.