cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A058821 Dimensions of homogeneous subspaces of shuffle algebra over 6-letter alphabet (see A058766 for 2-letter case).

Original entry on oeis.org

1, 6, 21, 146, 981, 6222, 38921, 239946, 1469826, 8957976, 54420339, 329815506, 1995387801, 12056025246, 72766743801, 438839319470, 2644790643216, 15930973595046, 95917737415956, 577288174746786, 3473350521083199, 20892333943230346, 125638899138654861
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 6^n - DivisorSum[n, MoebiusMu[n/#] * 6^# &] / n; a[0] = 1; a[1] = 6; Array[a, 23, 0] (* Amiram Eldar, Aug 13 2023 *)

Formula

For n >= 2, a(n) = 6^n - (1/n) * Sum_{d|n} A008683(n/d) * 6^d. - Sean A. Irvine, Aug 28 2022
a(n) = 6^n - A032164(n) for n >= 2. - Amiram Eldar, Aug 13 2023

Extensions

More terms from Sean A. Irvine, Aug 28 2022

A000031 Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, 52488, 99880, 190746, 364724, 699252, 1342184, 2581428, 4971068, 9587580, 18512792, 35792568, 69273668, 134219796, 260301176, 505294128, 981706832
Offset: 0

Views

Author

Keywords

Comments

Also a(n)-1 is the number of 1's in the truth table for the lexicographically least de Bruijn cycle (Fredricksen).
In music, a(n) is the number of distinct classes of scales and chords in an n-note equal-tempered tuning system. - Paul Cantrell, Dec 28 2011
Also, minimum cardinality of an unavoidable set of length-n binary words (Champarnaud, Hansel, Perrin). - Jeffrey Shallit, Jan 10 2019
(1/n) * Dirichlet convolution of phi(n) and 2^n, n>0. - Richard L. Ollerton, May 06 2021
From Jianing Song, Nov 13 2021: (Start)
a(n) is even for n != 0, 2. Proof: write n = 2^e * s with odd s, then a(n) * s = Sum_{d|s} Sum_{k=0..e} phi((2^e*s)/(2^k*d)) * 2^(2^k*d-e) = Sum_{d|s} Sum_{k=0..e-1} phi(s/d) * 2^(2^k*d-k-1) + Sum_{d|s} phi(s/d) * 2^(2^e*d-e) == Sum_{k=0..e-1} 2^(2^k*s-k-1) + 2^(2^e*s-e) == Sum_{k=0..min{e-1,1}} 2^(2^k*s-k-1) (mod 2). a(n) is odd if and only if s = 1 and e-1 = 0, or n = 2.
a(n) == 2 (mod 4) if and only if n = 1, 4 or n = 2*p^e with prime p == 3 (mod 4).
a(n) == 4 (mod 8) if and only if n = 2^e, 3*2^e for e >= 3, or n = p^e, 4*p^e != 12 with prime p == 3 (mod 4), or n = 2s where s is an odd number such that phi(s) == 4 (mod 8). (End)

Examples

			For n=3 and n=4 the necklaces are {000,001,011,111} and {0000,0001,0011,0101,0111,1111}.
The analogous shift register sequences are {000..., 001001..., 011011..., 111...} and {000..., 00010001..., 00110011..., 0101..., 01110111..., 111...}.
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, pp. 120, 172.
  • May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).

Crossrefs

Column 2 of A075195.
Cf. A001037 (primitive solutions to same problem), A014580, A000016, A000013, A000029 (if turning over is allowed), A000011, A001371, A058766.
Rows sums of triangle in A047996.
Dividing by 2 gives A053634.
A008965(n) = a(n) - 1 allowing different offsets.
Cf. A008965, A053635, A052823, A100447 (bisection).
Cf. A000010.

Programs

  • Haskell
    a000031 0 = 1
    a000031 n = (`div` n) $ sum $
       zipWith (*) (map a000010 divs) (map a000079 $ reverse divs)
       where divs = a027750_row n
    -- Reinhard Zumkeller, Mar 21 2013
    
  • Maple
    with(numtheory); A000031 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+phi(d)*2^(n/d); od; RETURN(s/n); fi; end; [ seq(A000031(n), n=0..50) ];
  • Mathematica
    a[n_] := Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n/d), 0], {d, 1, n}]/n
    a[n_] := Fold[#1 + 2^(n/#2) EulerPhi[#2] &, 0, Divisors[n]]/n (* Ben Branman, Jan 08 2011 *)
    Table[Expand[CycleIndex[CyclicGroup[n], t] /. Table[t[i]-> 2, {i, 1, n}]], {n,0, 30}] (* Geoffrey Critzer, Mar 06 2011*)
    a[0] = 1; a[n_] := DivisorSum[n, EulerPhi[#]*2^(n/#)&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2016 *)
    mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-2*x^i]/i,{i,1,mx}],{x,0,mx}],x] (*Herbert Kociemba, Oct 29 2016 *)
  • PARI
    {A000031(n)=if(n==0,1,sumdiv(n,d,eulerphi(d)*2^(n/d))/n)} \\ Randall L Rathbun, Jan 11 2002
    
  • Python
    from sympy import totient, divisors
    def A000031(n): return sum(totient(d)*(1<Chai Wah Wu, Nov 16 2022

Formula

a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n/d) = A053635(n)/n, where phi is A000010.
Warning: easily confused with A001037, which has a similar formula.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n. - Herbert Kociemba, Oct 29 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 2^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 2^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021
Dirichlet g.f.: f(s+1) * (zeta(s)/zeta(s+1)), where f(s) = Sum_{n>=1} 2^n/n^s. - Jianing Song, Nov 13 2021

Extensions

There is an error in Fig. M3860 in the 1995 Encyclopedia of Integer Sequences: in the third line, the formula for A000031 = M0564 should be (1/n) sum phi(d) 2^(n/d).

A091242 Reducible polynomials over GF(2), coded in binary.

Original entry on oeis.org

4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1). - M. F. Hasler, Aug 18 2014
The reducible polynomials in GF(2)[X] are the analog to the composite numbers A002808 in the integers.
It follows that the sequence is closed under application of A048720(.,.), which effects multiplication of the coded polynomials. It is also closed under application of blue code, A193231. The majority of the terms are coded multiples of X^1 (represented by 2) and/or X^1+1 (represented by 3): see A005843 and A001969 respectively. A246157 lists the other terms. - Peter Munn, Apr 20 2021

Examples

			For example, 5 = 101 in binary encodes the polynomial x^2+1 which is factored as (x+1)^2 in the polynomial ring GF(2)[X].
		

Crossrefs

Inverse: A091246. Almost complement of A014580. Union of A091209 & A091212. First differences: A091243. Characteristic function: A091247. In binary format: A091254.
Number of degree-n reducible polynomials: A058766.
Subsequences: A001969\{0,3}, A005843\{0,2}, A246156, A246157, A246158, A316970.

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,2);
      not Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2
    end proc:
    select(filter, [$2..200]); # Robert Israel, Aug 30 2018
  • Mathematica
    okQ[n_] := Module[{x, id = IntegerDigits[n, 2] // Reverse}, !IrreduciblePolynomialQ[id.x^Range[0, Length[id]-1], Modulus -> 2]];
    Select[Range[2, 200], okQ] (* Jean-François Alcover, Jan 04 2022 *)

Extensions

Edited by M. F. Hasler, Aug 18 2014

A058818 a(0) = 1, a(1) = 3; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(3), i.e., a(n) = 3^n - A027376(n).

Original entry on oeis.org

1, 3, 6, 19, 63, 195, 613, 1875, 5751, 17499, 53169, 161043, 487221, 1471683, 4441485, 13392331, 40356711, 121543683, 365898261, 1101089811, 3312448137, 9962241251, 29954655861, 90049997139, 270661661541, 813397065075, 2444101819329, 7343167949235
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 3-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 3^n - DivisorSum[n, MoebiusMu[n/#] * 3^# &] / n; a[0] = 1; a[1] = 3; Array[a, 28, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 3^n, 3^n - sumdiv(n, d, moebius(d)*3^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
a(16)-a(27) from Alois P. Heinz, Nov 25 2016

A058819 a(0) = 1, a(1) = 4; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(4), i.e., a(n) = 4^n - A027377(n).

Original entry on oeis.org

1, 4, 10, 44, 196, 820, 3426, 14044, 57376, 233024, 943822, 3813004, 15379476, 61946644, 249262666, 1002159108, 4026535936, 16169288644, 64901742816, 260410648684, 1044536098828, 4188615725644, 16792541414866, 67309233561244, 269746853382816, 1080863910568960, 4330384259668126
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 4-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 4^n - DivisorSum[n, MoebiusMu[n/#] * 4^# &] / n; a[0] = 1; a[1] = 4; Array[a, 27, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 4^n, 4^n - sumdiv(n, d, moebius(d)*4^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017

A058820 a(0) = 1, a(1) = 5; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(5), i.e., a(n) = 5^n - A001692(n).

Original entry on oeis.org

1, 5, 15, 85, 475, 2501, 13045, 66965, 341875, 1736125, 8789377, 44389205, 223796925, 1126802885, 5667555805, 28483073133, 143051171875, 718060661765, 3602769749125, 18069618626645, 90599060546905, 454130626863845, 2275813711825285, 11402627696161685, 57121117919938125
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 5-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 5^n - DivisorSum[n, MoebiusMu[n/#] * 5^# &] / n; a[0] = 1; a[1] = 5; Array[a, 25, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 5^n, 5^n - sumdiv(n, d, moebius(d)*5^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017

A058822 a(0) = 1, a(1) = 7; for n>=2 a(n) is the number of degree-n monic reducible polynomials over GF(7), i.e., a(n) = 7^n - A001693(n).

Original entry on oeis.org

1, 7, 28, 231, 1813, 13447, 98105, 705895, 5044501, 35869911, 254229409, 1797569767, 12687856601, 89436009607, 629778626473, 4431057410423, 31155872769301, 218946366105607, 1537946178052697, 10798953333511399, 75802652996855281, 531948441984119239, 3732101910100912537
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 7-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 7^n - DivisorSum[n, MoebiusMu[n/#] * 7^# &] / n; a[0] = 1; a[1] = 7; Array[a, 23, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 7^n, 7^n - sumdiv(n, d, moebius(d)*7^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017

A058823 a(0) = 1, a(1) = 8; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(8), i.e., a(n) = 8^n - A027380(n).

Original entry on oeis.org

1, 8, 36, 344, 3088, 26216, 218548, 1797560, 14680576, 119304704, 966370924, 7809031448, 62992875856, 507466905128, 4083900481540, 32838747285128, 263882791714816, 2119341001115528, 17013598599759616, 136530178177126616, 1095275429430191920, 8784163844623695896
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 8-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 8^n - DivisorSum[n, MoebiusMu[n/#] * 8^# &] / n; a[0] = 1; a[1] = 8; Array[a, 22, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 8^n, 8^n - sumdiv(n, d, moebius(d)*8^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017

A058824 a(0) = 1, a(1) = 9; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(9), i.e., a(n) = 9^n - A027381(n).

Original entry on oeis.org

1, 9, 45, 489, 4941, 47241, 443001, 4099689, 37666701, 344373849, 3138111873, 28528236009, 258893786601, 2346337687689, 21242736192681, 192165056625657, 1737206429739021, 15696171011450889, 141756044468718681, 1279754258848097769, 11549782186278421905, 104208561077631046089
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 9-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 9^n - DivisorSum[n, MoebiusMu[n/#] * 9^# &] / n; a[0] = 1; a[1] = 9; Array[a, 22, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 9^n, 9^n - sumdiv(n, d, moebius(d)*9^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017
Showing 1-9 of 9 results.