A059100 a(n) = n^2 + 2.
2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603
Offset: 0
Examples
For n = 2, a(2) = 6 since there are 6 election results in a 4-candidate, 2-voter election that have candidates c1 and c2 tied. Letting <i,j> denote voter 1 voting for candidate i and voter 2 voting for candidate j, the six election results are <1,2>, <2,1>, <3,3>, <3,4>, <4,3>, and <4,4>. - _Dennis P. Walsh_, May 08 2013
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 52, 56.
- Hesam Dashti, A New Upper Bound on the Length of Shortest Permutation Strings; An Algorithm for Generating Permutation Strings, arXiv:1009.5053 [math.CO], 2010. - _Jonathan Vos Post_, Sep 28 2010
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Alexander Soifer, Coffee Hour and the Conway-Soifer Cover-Up, In: How Does One Cut a Triangle? (2009), pp. 147-156. See also here
- Dennis P. Walsh, Notes on a tied election.
- Eric Weisstein's World of Mathematics, Dipyramidal Graph.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
- Eric Weisstein's World of Mathematics, Pappus Chain.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a059100 = (+ 2) . (^ 2) a059100_list = scanl (+) (2) [1, 3 ..] -- Reinhard Zumkeller, Feb 09 2015
-
Maple
with(combinat, fibonacci):seq(fibonacci(3, i)+1, i=0..49); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
Table[n^2 + 2, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *) LinearRecurrence[{3, -3, 1}, {2, 3, 6}, 50] (* Vincenzo Librandi, Feb 15 2012 *) Range[0, 20]^2 + 2 (* Eric W. Weisstein, Dec 31 2017 *) CoefficientList[Series[(-2 + 3 x - 3 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 31 2017 *)
-
PARI
a(n) = { n^2+2 } \\ Harry J. Smith, Jun 24 2009
-
Sage
[lucas_number1(3,n,-2) for n in range(0, 50)] # Zerinvary Lajos, May 16 2009
Formula
G.f.: (2 - 3*x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 05 2008
a(n) = ((n - 2)^2 + 2*(n + 1)^2)/3. - Reinhard Zumkeller, Feb 13 2009
a(n) = 2*n + a(n-1) - 1 with a(0) = 2. - Vincenzo Librandi, Aug 07 2010
From Paul Curtz, Nov 07 2012: (Start)
a(3*n) mod 9 = 2.
a(3*n+1) = 3*A056109(n).
a(3*n+2) = 3*A056105(n+1). (End)
Sum_{n >= 1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*(csch(sqrt(2)*Pi)))/4.
Product_{n>=0} (1 + 1/a(n)) = sqrt(3/2)*csch(sqrt(2)*Pi)*sinh(sqrt(3)*Pi).
Product_{n>=0} (1 - 1/a(n)) = csch(sqrt(2)*Pi)*sinh(Pi)/sqrt(2). (End)
E.g.f.: exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024
Comments