cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A058651 Continued fraction for Pi + e.

Original entry on oeis.org

5, 1, 6, 7, 3, 21, 2, 1, 2, 2, 1, 1, 2, 3, 3, 2, 5, 2, 1, 1, 1, 1, 3, 1, 8, 4, 4, 1, 1, 1, 1, 8, 1, 4, 1, 5, 1, 1, 1, 2, 4, 3, 2, 1, 1, 2, 1, 10, 1, 4, 1, 2, 1, 12, 1, 8, 2, 7, 39, 365, 2, 15, 2, 25, 1, 2, 5, 3, 3, 9, 3, 1, 1, 9, 1, 1, 47, 1, 1, 18, 1, 1, 2, 6, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 4, 1, 6, 37
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Dec 26 2000

Keywords

Comments

The question of the transcendence of the number Pi + e is still open.

Examples

			a(1) = 5 because Pi + e = 5.859874482048838473822930854632165381954416493075065395941912220031...
5.859874482048838473822930854... = 5 + 1/(1 + 1/(6 + 1/(7 + 1/(3 + ...)))). - _Harry J. Smith_, May 31 2009
		

Crossrefs

Cf. A059742 (decimal expansion).

Programs

  • PARI
    \p 500; contfrac(Pi+exp(1))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi+exp(1)); for (n=1, 20000, write("b058651.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 31 2009

Extensions

More terms from Jason Earls, Jun 28 2001
Offset changed by Andrew Howroyd, Aug 04 2024

A094001 Decimal expansion of (Pi + e)^Pi.

Original entry on oeis.org

2, 5, 8, 4, 5, 9, 3, 7, 1, 9, 6, 6, 7, 4, 7, 2, 8, 8, 7, 1, 6, 1, 0, 7, 1, 0, 2, 1, 6, 8, 4, 2, 6, 9, 2, 4, 3, 6, 0, 6, 2, 2, 6, 1, 7, 4, 5, 1, 4, 4, 9, 8, 3, 5, 2, 3, 9, 3, 5, 6, 3, 4, 5, 7, 4, 0, 3, 4, 6, 4, 6, 8, 7, 7, 2, 0, 7, 7, 9, 3, 8, 6, 6, 3, 2, 4, 2, 1, 9, 6, 8, 3, 7, 9, 2, 9, 6, 4, 9, 7, 8, 9, 8, 2, 0
Offset: 3

Views

Author

Mohammad K. Azarian, May 30 2004

Keywords

Examples

			258.4593719667472887161071021684269...
		

Crossrefs

Cf. A161683 (continued fraction). - Harry J. Smith, Jun 16 2009

Programs

  • Mathematica
    RealDigits[(Pi + E)^Pi, 10, 125][[1]] (* G. C. Greubel, Dec 27 2021 *)
  • PARI
    { default(realprecision, 20080); x=(Pi+exp(1))^Pi/100; for (n=3, 20000, d=floor(x); x=(x-d)*10; write("b094001.txt", n, " ", d)); } \\ Harry J. Smith, Jun 16 2009
    
  • Sage
    numerical_approx((pi+e)^pi, digits=125) # G. C. Greubel, Dec 27 2021

A121831 a(n) = floor((Pi + e)^n).

Original entry on oeis.org

1, 5, 34, 201, 1179, 6909, 40488, 237256, 1390293, 8146945, 47740079, 279750872, 1639304997, 9606121523, 56290666385, 329856239532, 1932916160781, 11326646086501, 66372724369487, 388935833836819, 2279115167854766
Offset: 0

Views

Author

Mohammad K. Azarian, Aug 27 2006

Keywords

Crossrefs

Cf. A059742 (Pi+e), A121282.

Programs

  • Mathematica
    Table[Floor[(Pi + E)^n], {n, 0, 80}] (* Vincenzo Librandi, Feb 21 2013 *)

Extensions

Offset changed by Georg Fischer, Sep 02 2022

A121899 a(n) = ceiling((Pi + e)*sqrt(n)).

Original entry on oeis.org

0, 6, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling((Exp(1) + Pi(C))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    Table[Ceiling[(Pi + E) Sqrt[n]], {n, 0, 70}] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((exp(1)+Pi)*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022

A121901 a(n) = floor((Pi + e)*sqrt(n)).

Original entry on oeis.org

0, 5, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 42, 42, 43, 43, 43, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48
Offset: 0

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Floor((Exp(1) + Pi(C))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    Table[Floor[(Pi + E) Sqrt[n]], {n, 0, 70}] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(floor((exp(1)+Pi)*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022

A291854 Decimal expansion of the "Pi AND e" (Piande) constant.

Original entry on oeis.org

2, 1, 4, 1, 1, 3, 2, 3, 5, 4, 8, 5, 3, 3, 1, 5, 5, 4, 8, 3, 3, 3, 4, 2, 8, 8, 2, 1, 2, 3, 9, 8, 5, 7, 0, 5, 7, 1, 1, 8, 2, 8, 6, 4, 1, 4, 9, 6, 7, 3, 1, 4, 3, 6, 7, 2, 5, 3, 6, 8, 8, 0, 7, 9, 4, 0, 1, 3, 5, 7, 5, 6, 8, 5, 8, 8, 2, 6, 5, 7, 6, 3, 2, 9, 9, 4, 6, 5, 4, 8, 2, 5, 1, 2, 5, 8, 6, 5, 8, 2, 1, 0, 8, 5
Offset: 1

Author

Alois P. Heinz, Sep 13 2017

Keywords

Comments

Pi_2 = 11.00100100001111110... -> 3.1415926535897...
e_2 = 10.10110111111000010... -> 2.7182818284590...
Pi_2 AND e_2 = 10.00100100001000010... -> 2.1411323548533...

Examples

			2.1411323548533155483334288212398570571182864149673143672536880794...
		

Formula

A291858 Decimal expansion of the "Pi OR e" (Piore) constant.

Original entry on oeis.org

3, 7, 1, 8, 7, 4, 2, 1, 2, 7, 1, 9, 5, 5, 2, 2, 9, 2, 5, 4, 8, 9, 5, 0, 2, 0, 3, 3, 3, 9, 2, 3, 0, 8, 3, 2, 4, 8, 3, 6, 1, 3, 0, 0, 7, 8, 1, 0, 7, 7, 5, 1, 0, 2, 8, 6, 8, 8, 2, 2, 4, 1, 4, 0, 6, 3, 0, 5, 3, 5, 4, 6, 8, 0, 5, 1, 4, 9, 0, 8, 2, 9, 8, 9, 9, 9, 5, 1, 5, 2, 1, 3, 5, 4, 6, 9, 6, 9, 1, 3, 3, 0, 1
Offset: 1

Author

Alois P. Heinz, Sep 13 2017

Keywords

Comments

Pi_2 = 11.00100100001111110... -> 3.1415926535897...
e_2 = 10.10110111111000010... -> 2.7182818284590...
Pi_2 OR e_2 = 11.10110111111111110... -> 3.7187421271955...

Examples

			3.71874212719552292548950203339230832483613007810775102868822414063...
		

Formula

A094244 Decimal expansion of 1/sqrt(Pi + e).

Original entry on oeis.org

4, 1, 3, 1, 0, 0, 6, 1, 6, 6, 0, 2, 7, 9, 5, 3, 9, 9, 1, 9, 4, 0, 6, 8, 6, 1, 8, 9, 0, 5, 6, 1, 2, 0, 4, 4, 9, 6, 4, 4, 0, 9, 6, 2, 3, 8, 4, 8, 8, 4, 0, 2, 0, 9, 9, 5, 2, 9, 7, 7, 3, 0, 6, 1, 8, 8, 8, 1, 4, 3, 2, 9, 3, 6, 5, 9, 3, 3, 0, 0, 1, 0, 9, 2, 2, 9, 6, 5, 4, 5, 6, 0, 0, 8, 7, 4, 6, 7, 2, 8, 1, 4, 2, 3, 0
Offset: 0

Author

Mohammad K. Azarian, May 30 2004

Keywords

Examples

			0.413100616602795399...
		

Crossrefs

Programs

Extensions

Offset corrected by Mohammad K. Azarian, Dec 11 2008

A352396 Integer part of e[n]Pi, where [n] indicates hyper-n, e = 2.718281828459045..., and Pi = 3.141592653589793... (using H. Kneser's proposal for n > 3).

Original entry on oeis.org

4, 5, 8, 23, 37149801960
Offset: 0

Author

Marco Ripà, Apr 08 2022

Keywords

Comments

The first term of this sequence is given by floor(e[0]Pi) = floor(Pi + 1) = floor(4.14159) = 4, which is the integer part of "e zeration Pi". In general, zeration is not a commutative arithmetic operation, while floor(e[1]Pi) = floor(Pi + e) = floor(5.85987) = 5 and floor(e[2]Pi) = floor(Pi * e) = floor(8.53973) = 8 hold since e[1]Pi = Pi[1]e and e[2]Pi = Pi[2]e.
If n = 3, then floor(e[3]Pi) = floor(e^Pi) = floor(23.14069) = 23 (if n > 2, then hyper-n is not characterized by the commutative property anymore, even if we can find fascinating examples as 4[3]2 = 2[3]4 = 16).
Now, tetration can be extended to complex bases as described in the Paulsen reference and the corresponding term of the present sequence can be found using his online calculator (see Links), so we have that floor(e[4]Pi) = floor(37149801960.55) = 37149801960. An easy proof that 37149801960.55999 > e^^Pi > 37149801960.55 follows from the chain of inequalities 37149801960.5569855999 > |37149801960.5569855 + 5.9249049902894650649*10^(-11)| > e^^Pi > |37149801960.556985498 + 5.9249049902894650647*10^(-11)| > 37149801960.55.
As far as we know, it has not been proved if e^^Pi is an irrational number (or not).

Examples

			For n = 3, a(3) = floor(e[3]Pi) = floor(e^Pi) = 15.
		

Formula

a(n) = floor(e[n]Pi).
Showing 1-10 of 25 results. Next