A059929 a(n) = Fibonacci(n)*Fibonacci(n+2).
0, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 20737, 54288, 142130, 372099, 974170, 2550408, 6677057, 17480760, 45765226, 119814915, 313679522, 821223648, 2149991425, 5628750624, 14736260450, 38580030723, 101003831722, 264431464440, 692290561601, 1812440220360
Offset: 0
Examples
G.f. = 2*x + 3*x^2 + 10*x^3 + 24*x^4 + 65*x^5 + 168*x^6 + ... - _Michael Somos_, Mar 18 2022
References
- Oskar Perron, Die Lehre von den Kettenbrüchen, Band I, 3. Auflage, B. G. Teubner, Stuttgart, 1954, pp. 61-61.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2374 (first 501 terms from Harry J. Smith)
- Tim Jones (producer), Engineering Bits & Bytes: The Fibonacci Puzzle, Wayne State University College of Engineering (2011).
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, arXiv:math/0304090 [math.CO], 2003.
- Marc Renault, Properties of the Fibonacci Sequence Under Various Moduli, Master's Thesis, Wake Forest University, 1996.
- Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Programs
-
GAP
a:=List([0..30],n->Fibonacci(n)*Fibonacci(n+2));; Print(a); # Muniru A Asiru, Jan 05 2019
-
Magma
[Fibonacci(n)*Fibonacci(n+2): n in [0..30]]; // Vincenzo Librandi, Jul 02 2014
-
Maple
with(combinat): a:=n->fibonacci(n)*fibonacci(n+2): seq(a(n), n=0..26); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Table[Fibonacci[n]*Fibonacci[n+2],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
-
PARI
a(n) = fibonacci(n)*fibonacci(n + 2) \\ Harry J. Smith, Jun 30 2009
-
Python
from sympy import fibonacci [fibonacci(n)*fibonacci(n+2) for n in range(30)] # Stefano Spezia, Jan 05 2019
-
Sage
[fibonacci(n)*fibonacci(n+2) for n in range(30)] # G. C. Greubel, Nov 21 2018
Formula
G.f.: (2*x-x^2) / ((1+x)*(1-3*x+x^2)).
Sum_{n>=1} 1/a(n) = 1.
Sum_{n>=1} (-1)^n/a(n) = 2 - sqrt(5).
Sum_{n>=1} 1/a(2n-1) = 1/phi = (sqrt(5) - 1)/2. - Franz Vrabec, Sep 15 2005
Sum_{n>=1} 1/a(2n) = (3 - sqrt(5))/2. - Franz Vrabec, Nov 30 2009
a(n) = ((7+3*sqrt(5))/10)*((3+sqrt(5))/2)^(n-1) + ((7-3*sqrt(5))/10)*((3-sqrt(5))/2)^(n-1) + (3/5)*(-1)^(n-1). - Tim Monahan, Aug 09 2011
a(n) = (Lucas(n+1)^2 - Fibonacci(n+1)^2)/4. - Vincenzo Librandi, Aug 02 2014
a(n) = F(n-2)*F(n) + F(n-1)*F(n) + F(n-2)*F(n+1) + F(n-1)*F(n+1), where F=A000045, F(-2)=-1, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = A035513(1,n-1)*A035513(3,n-1)/2 = A035513(1,n-1)*A035513(4,n-1)/3. - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A001519(n+2). - R. J. Mathar, Oct 19 2021
a(n)+a(n+3) = 2*F(2n+5) = A126358(n+2). - Andrés Ventas, Oct 25 2021
Sum_{n>=1} Fibonacci(n+1)/a(n) = 2. - Amiram Eldar, Jan 11 2022
a(n) = a(-2-n) and a(n) + a(n+3) = 2*(a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Mar 18 2022
Comments