A060594 Number of solutions to x^2 == 1 (mod n), that is, square roots of unity modulo n.
1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 2, 8, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 4, 2, 2, 4, 8, 2, 4, 2, 4, 4, 2, 2, 8, 2, 2, 4, 4, 2, 2, 4, 8, 4, 2, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 8, 2, 2, 2, 8, 4, 2, 4, 8, 2, 4, 4, 4, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2
Offset: 1
Examples
The four numbers 1^2, 3^2, 5^2 and 7^2 are congruent to 1 modulo 8, so a(8) = 4.
References
- Trygve Nagell, Introduction to Number Theory, AMS Chelsea, 1981, p. 100. [From T. D. Noe, May 22 2009]
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisé, 1995, Collection SMF, p. 260.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, pp. 196-197.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
- Keith Matthews, Solving the congruence x^2=a(mod m).
- Emilia Mezzetti and Rosa Maria Miró-Roig, Togliatti systems and Galois coverings, arXiv preprint arXiv:1611.05620 [math.AG], 2016-2018. See Lemma 6.1.
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 4].
- N. J. A. Sloane, Transforms.
- Lực Ta, Good involutions of twisted conjugation subquandles and Alexander quandles, arXiv:2508.16772 [math.GT], 2025.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Crossrefs
Programs
-
Maple
A060594 := proc(n) option remember; local a,b,c; if type(n,even) then a:= padic:-ordp(n,2); b:= 2^a; c:= n/b; min(b/2, 4) * procname(c) else 2^nops(numtheory:-factorset(n)) fi end proc: map(A060594, [$1 .. 100]); # Robert Israel, Jan 05 2015
-
Mathematica
a[n_] := Sum[ Boole[ Mod[k^2 , n] == 1], {k, 1, n}]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 21 2011 *) a[n_] := Switch[Mod[n, 8], 2|6, 2^(PrimeNu[n]-1), 1|3|4|5|7, 2^PrimeNu[n], 0, 2^(PrimeNu[n]+1)]; Array[a, 103] (* Jean-François Alcover, Apr 09 2016 *)
-
PARI
a(n)=sum(i=1,n,if((i^2-1)%n,0,1))
-
PARI
a(n)=my(o=valuation(n,2));2^(omega(n>>o)+max(min(o-1,2),0)) \\ Charles R Greathouse IV, Jun 06 2013
-
PARI
a(n)=if(n<=2, 1, 2^#znstar(n)[3] ); \\ Joerg Arndt, Jan 06 2015
-
Python
from sympy import primefactors def a007814(n): return 1 + bin(n - 1).count('1') - bin(n).count('1') def a(n): if n%2==0: A=a007814(n) b=2**A c=n//b return min(b//2, 4)*a(c) else: return 2**len(primefactors(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 18 2017, after the Maple program
-
Python
from sympy import primefactors def A060594(n): return (1<
>(s:=(~n & n-1).bit_length()))))*(1 if n&1 else 1< Chai Wah Wu, Oct 26 2022 -
Sage
print([len(Integers(n).square_roots_of_one()) for n in range(1,100)]) # Ralf Stephan, Mar 30 2014
Formula
If n == 0 (mod 8), a(n) = 2^(A005087(n) + 2); if n == 4 (mod 8), a(n) = 2^(A005087(n) + 1); otherwise a(n) = 2^(A005087(n)). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001
a(n) = 2^omega(n)/2 if n == +/-2 (mod 8), a(n) = 2^omega(n) if n== +/-1, +/-3, 4 (mod 8), a(n) = 2*2^omega(n) if n == 0 (mod 8), where omega(n) = A001221(n). - Benoit Cloitre, Feb 02 2003
For n >= 2 A046073(n) * a(n) = A000010(n) = phi(n). This gives a formula for A046073(n) using the one in A060594(n). - Sharon Sela (sharonsela(AT)hotmail.com), Mar 09 2002
Multiplicative with a(2) = 1; a(2^2) = 2; a(2^e) = 4 for e > 2; a(q^e) = 2 for q an odd prime. - Eric M. Schmidt, Jul 09 2013
a(n) = 2^A046072(n) for n>2, in accordance with the above formulas by Ahmed Fares. - Geoffrey Critzer, Jan 05 2015
a(n) = Sum_{k=1..n} floor(sqrt(1+n*(k-1)))-floor(sqrt(n*(k-1))). - Wesley Ivan Hurt, May 19 2021
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: (1-1/2^s+2/4^s)*zeta(s)^2/zeta(2*s).
Sum_{k=1..n} a(k) ~ (6/Pi^2)*n*(log(n) + 2*gamma - 1 - log(2)/2 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
Comments