A327730 a(n) = A060594(2n).
1, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 2, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 8, 4, 4, 2, 8, 2, 4, 4, 8, 2, 4, 4, 8, 4, 4, 2, 16, 2, 4, 4, 4, 4, 8, 2, 8, 4, 8, 2, 8, 2, 4, 4, 8, 4, 8, 2, 8, 2, 4, 2, 16, 4, 4, 4, 8, 2, 8, 4, 8, 4, 4, 4, 8, 2, 4, 4, 8
Offset: 1
Examples
List of quadratic number fields (including Q itself) that are subfields of Q(exp(Pi*i/n)): n = 2 (the quotient field over the Gaussian integers): Q, Q(i); n = 3 (the quotient field over the Eisenstein integers): Q, Q(sqrt(-3)); n = 4: Q, Q(sqrt(2)), Q(i), Q(sqrt(-2)); n = 5: Q, Q(sqrt(5)); n = 6: Q, Q(sqrt(3)), Q(sqrt(-3)), Q(i); n = 7: Q, Q(sqrt(-7)); n = 8: Q, Q(sqrt(2)), Q(i), Q(sqrt(-2)); n = 9: Q, Q(sqrt(-3)); n = 10: Q, Q(sqrt(5)), Q(i), Q(sqrt(-5)); n = 11: Q, Q(sqrt(-11)); n = 12: Q, Q(sqrt(2)), Q(sqrt(3)), Q(sqrt(6)), Q(sqrt(-3)), Q(i), Q(sqrt(-2)), Q(sqrt(-6)); n = 13: Q, Q(sqrt(13)); n = 14: Q, Q(sqrt(7)), Q(i), Q(sqrt(-7)); n = 15: Q, Q(sqrt(5)), Q(sqrt(-3)), Q(sqrt(-15)); n = 16: Q, Q(sqrt(2)), Q(i), Q(sqrt(-2)).
Programs
-
Mathematica
f[p_, e_] := 2; f[2, e_] := If[e == 1, 2, 4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 31 2022 *)
-
PARI
a(n) = 2^#znstar(2*n)[2]
Formula
Multiplicative with a(2) = 2 and a(2^e) = 4 for e > 1; a(p^e) = 2 for odd primes p.
a(n) = 2^omega(n) if 4 does not divide n, otherwise 2^(omega(n)+1), omega = A001221.
From Amiram Eldar, Dec 31 2022: (Start)
Dirichlet g.f.: (zeta(s)^2/zeta(2*s))*((2+2^s+4^s)/(2^s+4^s)).
Sum_{k=1..n} a(k) ~ (n*log(n) + (2*gamma - 5*log(2)/12 - 2*zeta'(2)/zeta(2) - 1)*n)*8/Pi^2, where gamma is Euler's constant (A001620). (End)
Extensions
Offset 1 from Sébastien Palcoux, Jun 22 2022
Comments