cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152648 Decimal expansion of 2*zeta(3).

Original entry on oeis.org

2, 4, 0, 4, 1, 1, 3, 8, 0, 6, 3, 1, 9, 1, 8, 8, 5, 7, 0, 7, 9, 9, 4, 7, 6, 3, 2, 3, 0, 2, 2, 8, 9, 9, 9, 8, 1, 5, 2, 9, 9, 7, 2, 5, 8, 4, 6, 8, 0, 9, 9, 7, 7, 6, 3, 5, 8, 4, 5, 4, 3, 1, 1, 0, 6, 8, 3, 6, 7, 6, 4, 1, 1, 5, 7, 2, 6, 2, 6, 1, 8, 0, 3, 7, 2, 9, 1, 1, 7, 4, 7, 2, 1, 8, 6, 7, 0, 5, 1, 6, 2, 9, 2, 3, 9
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2008

Keywords

Comments

A division by 2 is missing in Mezo's penultimate formula on page 4.
This constant is irrational but not known to be transcendental. - Charles R Greathouse IV, Sep 02 2024

Examples

			Equals 2.4041138063191885707994...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Cf. A060804 (continued fraction).

Programs

  • Mathematica
    RealDigits[2*Zeta[3],10,120][[1]] (* Harvey P. Dale, Dec 02 2011 *)
  • PARI
    default(realprecision, 20080); x=2*zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b152648.txt", n, " ", d));  \\ Harry J. Smith, Jul 12 2009

Formula

Equals 2*A002117 = Sum_{j>=1} H(j)/j^2 where H(j) = A001008(j)/A002805(j).
Equals Integral_{x>=0} x^2/(exp(x)-1). - Jean-François Alcover, Nov 12 2013
Equals Sum_{m>=1} Sum_{n>=1} 1/(m*n*(m + n)). - Jean-François Alcover, Jun 17 2020
Equals Integral_{x=0..1} log(x)^2/(1-x) dx. - Amiram Eldar, Aug 03 2020
Equals the absolute value of psi''(1) = -2.404..., the 2nd derivative of the digamma function at 1. - R. J. Mathar, Aug 29 2023

A060805 Numerators of special continued fraction for 2*zeta(3).

Original entry on oeis.org

2, 1, 2, 1, 4, 2, 6, 4, 9, 6, 12, 9, 16, 12, 20, 16, 25, 20, 30, 25, 36, 30, 42, 36, 49, 42, 56, 49, 64, 56, 72, 64, 81, 72, 90, 81, 100, 90, 110, 100, 121, 110, 132, 121, 144, 132, 156, 144, 169, 156, 182, 169, 196, 182, 210, 196, 225, 210, 240, 225, 256, 240, 272, 256
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

References

  • Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

Crossrefs

Cf. A152648 (2*zeta(3)).

Programs

  • Maple
    A060805 := proc(n) local nshf,k ; if n <= 2 then op(n,[2,1]) ; else nshf := n-1 ; k := floor(nshf/4) ; if nshf mod 4 = 1 then k*(k+1) ; elif nshf mod 4 = 0 then (k+1)^2 ; elif nshf mod 4 = 2 then (k+1)*(k+2) ; else (k+1)^2 ; end if; end if; end proc: seq(A060805(n),n=1..80) ; # R. J. Mathar, Jul 31 2010
  • Mathematica
    Join[{2, 1}, LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {2, 1, 4, 2, 6, 4, 9}, 100]] (* Jean-François Alcover, Apr 01 2020 *)

Formula

a(n) = A008733(n-1), n>2. - R. J. Mathar, Jul 31 2010

Extensions

More terms from R. J. Mathar, Jul 31 2010

A060806 Denominators of special continued fraction for 2*zeta(3).

Original entry on oeis.org

2, 4, 3, 2, 4, 6, 5, 4, 6, 8, 7, 6, 8, 10, 9, 8, 10, 12, 11, 10, 12, 14, 13, 12, 14, 16, 15, 14, 16, 18, 17, 16, 18, 20, 19, 18, 20, 22, 21, 20, 22, 24, 23, 22, 24, 26, 25, 24, 26, 28, 27, 26, 28, 30, 29, 28, 30, 32, 31, 30, 32, 34, 33, 32, 34, 36, 35, 34, 36
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

References

  • Y. V. Nesterenko, A few remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

Crossrefs

Formula

a(4*k+1) = 2*k+2, a(4*k+2) = 2*k+4, a(4*k+3) = 2*k+3, a(4*k+4) = 2*k+2 [from Nesterenko]. - Sean A. Irvine, Jan 01 2023

Extensions

More terms from Sean A. Irvine, Jan 01 2023

A060808 Denominators of ordinary continued fraction convergents for 2*zeta(3).

Original entry on oeis.org

1, 2, 5, 47, 146, 1507, 1653, 8119, 147795, 155914, 615537, 3233599, 10316334, 13549933, 50966133, 166448332, 217414465, 383862797, 2136728450, 6794048147, 56489113626, 63283161773, 183055437172, 246338598945, 15456048571762
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

Examples

			2, 5/2, 12/5, 113/47, 351/146, 3623/1507, 3974/1653, ...
		

References

  • Y. V. Nesterenko, Some remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

Crossrefs

Cf. A060804, A060805, A060806, A060807 (numerators).

Programs

  • Maple
    Digits := 100: t1 := evalf(2*Zeta(3)); cfrac(t1,l1,l2); l1;

Extensions

More terms from Vladeta Jovovic, Apr 29 2001
Offset changed by Andrew Howroyd, Jul 10 2024

A060807 Numerators of ordinary continued fraction convergents for 2*zeta(3).

Original entry on oeis.org

2, 5, 12, 113, 351, 3623, 3974, 19519, 355316, 374835, 1479821, 7773940, 24801641, 32575581, 122528384, 400160733, 522689117, 922849850, 5136938367, 16333664951, 135806257975, 152139922926, 440086103827, 592226026753
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

Examples

			2, 5/2, 12/5, 113/47, 351/146, 3623/1507, 3974/1653, ...
		

References

  • Y. V. Nesterenko, Some remarks on zeta(3), Mathematical Notes, 59 (No. 6, 1996), 625-636.

Crossrefs

Cf. A060804, A060805, A060806, A060808 (denominators).

Programs

  • Maple
    Digits := 100: t1 := evalf(2*Zeta(3)); cfrac(t1,l1,l2); l1;

Extensions

More terms from Vladeta Jovovic, Apr 29 2001
Offset changed by Andrew Howroyd, Jul 10 2024
Showing 1-5 of 5 results.