cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A233090 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*H(n)/n^2, where H(n) is the n-th harmonic number.

Original entry on oeis.org

7, 5, 1, 2, 8, 5, 5, 6, 4, 4, 7, 4, 7, 4, 6, 4, 2, 8, 3, 7, 4, 8, 3, 6, 3, 5, 0, 9, 4, 4, 6, 5, 6, 2, 4, 4, 2, 2, 8, 1, 1, 6, 4, 3, 2, 7, 1, 2, 8, 1, 1, 8, 0, 1, 1, 2, 0, 1, 6, 9, 7, 2, 2, 0, 8, 8, 6, 4, 8, 8, 7, 8, 6, 1, 6, 4, 4, 5, 6, 8, 1, 3, 6, 6, 5, 3, 4, 9, 2, 1, 0, 0, 5, 8, 3, 4, 5, 3, 6, 3
Offset: 0

Views

Author

Jean-François Alcover, Dec 04 2013, after the comment by Peter Bala about A233033

Keywords

Examples

			0.7512855644747464283748363509446562442281164327128118011201697220886...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Cf. A002117 (zeta(3)), A197070 (3*zeta(3)/4), A233091 (7*zeta(3)/8), A076788 (alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3), A233033 (alternating sum with denominator n^3).

Programs

  • Mathematica
    RealDigits[ 5*Zeta[3]/8, 10, 100] // First

Formula

Equals 5*zeta(3)/8.
Equals -Integral_{x=0..1} (log(1+x)*log(1-x)/x)*dx. - Amiram Eldar, May 06 2023
Equals Sum_{m>=1} Sum_{n>=1} (-1)^(m-1)/(m*n*(m + n)) (see Finch). - Stefano Spezia, Nov 02 2024

A238168 Decimal expansion of sum_(n>=1) H(n)^2/n^5 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 0, 9, 1, 8, 8, 2, 5, 8, 8, 6, 6, 4, 5, 3, 0, 0, 8, 5, 1, 6, 5, 7, 8, 2, 1, 3, 0, 6, 9, 9, 2, 7, 3, 8, 7, 3, 3, 7, 7, 5, 6, 7, 8, 8, 9, 5, 3, 2, 4, 0, 8, 6, 2, 6, 3, 8, 1, 2, 6, 6, 6, 6, 7, 4, 7, 6, 6, 6, 6, 7, 7, 6, 8, 4, 0, 1, 2, 8, 5, 8, 2, 0, 4, 3, 6, 9, 1, 8, 0, 6, 7, 4, 2, 6, 5, 7, 5, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.091882588664530085165782130699273873...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[6*Zeta[7] -Zeta[2]*Zeta[5] -(5/2)*Zeta[3]*Zeta[4],10,100][[1]]
  • PARI
    6*zeta(7) - zeta(2)*zeta(5) - (5/2)*zeta(3)*zeta(4) \\ G. C. Greubel, Dec 30 2017

Formula

Equals 6*zeta(7) - zeta(2)*zeta(5) - 5/2*zeta(3)*zeta(4).

A238181 Decimal expansion of sum_(n>=1) H(n)^2/n^3 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,3)).

Original entry on oeis.org

1, 6, 5, 1, 9, 4, 2, 7, 9, 2, 7, 0, 4, 4, 9, 8, 6, 2, 3, 9, 6, 2, 6, 9, 3, 7, 6, 1, 1, 1, 4, 4, 9, 4, 0, 1, 6, 1, 1, 7, 6, 3, 1, 7, 5, 1, 5, 9, 6, 5, 6, 0, 6, 3, 3, 2, 1, 3, 8, 5, 2, 0, 9, 5, 6, 0, 8, 5, 9, 7, 5, 3, 0, 1, 0, 5, 3, 8, 0, 9, 8, 8, 2, 5, 7, 7, 6, 6, 5, 0, 0, 4, 2, 8, 2, 1, 7, 0, 6, 9
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.6519427927044986239626937611144940161...
		

Crossrefs

Programs

  • Mathematica
    7/2*Zeta[5] - Zeta[2]*Zeta[3] // RealDigits[#, 10, 100]& // First
  • PARI
    7/2*zeta(5) - zeta(2)*zeta(3) \\ Stefano Spezia, May 22 2025

Formula

7/2*zeta(5) - zeta(2)*zeta(3).

A238182 Decimal expansion of Sum_{n>=1} H(n)^2/n^4 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,4)).

Original entry on oeis.org

1, 2, 2, 1, 8, 7, 9, 9, 4, 5, 3, 1, 9, 8, 8, 0, 1, 3, 8, 5, 1, 8, 8, 0, 6, 4, 7, 5, 2, 9, 0, 9, 9, 4, 8, 1, 2, 5, 6, 9, 0, 4, 1, 5, 4, 4, 0, 2, 1, 6, 7, 2, 4, 6, 4, 1, 8, 3, 5, 3, 3, 3, 5, 9, 8, 8, 7, 0, 0, 8, 1, 9, 3, 6, 3, 2, 7, 0, 4, 9, 6, 6, 6, 7, 7, 1, 5, 8, 6, 3, 0, 4, 6, 4, 5, 4, 4, 6, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Comments

No closed form of S(2,2q) is known to date, except for S(2,2) (A218505) and S(2,4) (this sequence).

Examples

			1.221879945319880138518806475290994812569...
		

Crossrefs

Programs

  • Mathematica
    97/24*Zeta[6] - 2*Zeta[3]^2 // RealDigits[#, 10, 100]& // First

Formula

97/24*zeta(6) - 2*zeta(3)^2.

A102354 a(n) is the number of ways n can be written as k^2 * j, 0 < j <= k.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Leroy Quet, Feb 21 2005

Keywords

Comments

Sum_{n>0} a(n)/n = 2*zeta(3). See A152648.

Examples

			a(18) = 1 because 18 = k^2 * j, j <= k, in one way: k=3, j=2.
		

Crossrefs

Programs

  • Mathematica
    t = Sort[ Flatten[ Table[k^2*j, {k, 11}, {j, k}]]]; Table[ Count[t, n], {n, 105}] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    A102354(n) = sumdiv(n,d,(issquare(d) && (sqrtint(d) >= (n/d)))); \\ Antti Karttunen, Aug 27 2017

Formula

a(n) >= A102448(n). - Antti Karttunen, Aug 27 2017

Extensions

More terms from Robert G. Wilson v, Feb 22 2005

A256988 Decimal expansion of Sum_{k>=1} H(k)^3/k^2 where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 1, 9, 0, 1, 7, 3, 0, 9, 9, 5, 3, 8, 1, 5, 1, 0, 7, 4, 0, 3, 0, 6, 0, 5, 5, 4, 6, 7, 2, 5, 2, 6, 5, 2, 9, 6, 0, 6, 6, 1, 6, 7, 9, 2, 6, 2, 3, 2, 8, 4, 3, 7, 7, 4, 9, 0, 5, 6, 0, 9, 2, 7, 5, 0, 9, 3, 2, 0, 0, 9, 4, 1, 9, 0, 5, 3, 3, 0, 2, 8, 1, 5, 4, 3, 8, 0, 9, 3, 0, 8, 2, 9, 7, 1, 1, 6, 8
Offset: 2

Views

Author

Jean-François Alcover, Apr 14 2015

Keywords

Examples

			12.346581901730995381510740306055467252652960661679262328437749...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[10*Zeta[5] + (Pi^2/6)*Zeta[3], 10, 104] // First
  • PARI
    10*zeta(5) + zeta(2)*zeta(3) \\ Michel Marcus, Apr 14 2015

Formula

Equals 10*zeta(5) + zeta(2)*zeta(3) or, 10*zeta(5) + (Pi^2/6)*zeta(3).

A060804 Continued fraction for 2*zeta(3).

Original entry on oeis.org

2, 2, 2, 9, 3, 10, 1, 4, 18, 1, 3, 5, 3, 1, 3, 3, 1, 1, 5, 3, 8, 1, 2, 1, 62, 1, 1, 1, 3, 2, 2, 1, 1, 5, 3, 1, 8, 2, 2, 34, 7, 1, 1, 5, 1, 2, 3, 3, 14, 9, 214, 11, 8, 23, 1, 8, 2, 10, 2, 2, 2, 1, 1, 6, 1, 8, 2, 1, 9, 2, 1, 11, 1, 3, 3, 4, 1, 28, 6, 1, 28, 1, 15, 1, 1, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2001

Keywords

Examples

			2.404113806319188570799476323... = 2 + 1/(2 + 1/(2 + 1/(9 + 1/(3 + ...)))). - _Harry J. Smith_, Jul 12 2009
		

Crossrefs

Cf. A060805, A060806, A060807, A060808 (convergents).
Cf. A152648 (decimal expansion).

Programs

  • Maple
    Digits := 100: t1 := evalf(2*Zeta(3)); convert(t1,confrac);
  • Mathematica
    ContinuedFraction[2 Zeta[3],90] (* Harvey P. Dale, Apr 25 2025 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*zeta(3)); for (n=1, 20000, write("b060804.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jul 12 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A238166 Decimal expansion of sum_(n>=1) H(n,2)/n^4 where H(n,2) = A007406(n)/A007407(n) is the n-th harmonic number of order 2.

Original entry on oeis.org

1, 1, 0, 5, 8, 2, 6, 4, 4, 4, 4, 3, 8, 8, 1, 7, 8, 5, 4, 0, 0, 8, 8, 4, 5, 7, 6, 8, 8, 7, 6, 6, 8, 0, 9, 8, 4, 5, 4, 9, 7, 9, 6, 2, 4, 2, 4, 1, 9, 6, 0, 4, 1, 5, 3, 5, 1, 7, 2, 9, 7, 9, 4, 0, 5, 6, 3, 8, 0, 6, 4, 6, 1, 8, 3, 0, 7, 0, 1, 4, 6, 9, 3, 3, 8, 6, 0, 1, 7, 7, 2, 5, 3, 9, 0, 0, 5, 7, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.1058264444388178540088457688766809845497962424196...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2 - 1/3*Zeta[6], 10, 100][[1]]
  • PARI
    zeta(3)^2-Pi^6/2835 /* Michel Marcus, Jul 04 2014 */

Formula

Equals zeta(3)^2 - zeta(6)/3.

A238167 Decimal expansion of sum_(n>=1) H(n,3)/n^5 where H(n,3) = A007408(n)/A007409(n) is the n-th harmonic number of order 3.

Original entry on oeis.org

1, 0, 4, 6, 9, 2, 4, 4, 0, 1, 7, 2, 4, 6, 7, 6, 0, 8, 2, 3, 4, 5, 7, 2, 3, 0, 1, 4, 2, 2, 2, 7, 9, 2, 3, 2, 9, 6, 1, 9, 5, 9, 8, 4, 0, 2, 2, 6, 4, 1, 4, 7, 7, 1, 4, 7, 4, 8, 3, 3, 2, 5, 0, 9, 5, 0, 5, 1, 8, 3, 8, 4, 4, 2, 2, 8, 2, 0, 1, 1, 1, 9, 0, 0, 1, 7, 8, 1, 8, 5, 1, 8, 6, 0, 3, 0, 7, 7, 9, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.046924401724676082345723014222792329619598402264...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Zeta[2]*Zeta[5] +2*Zeta[3]*Zeta[4] -10*Zeta[7],10,100][[1]]
  • PARI
    5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 10*zeta(7) \\ G. C. Greubel, Dec 30 2017

Formula

Equals 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 10*zeta(7).

A238169 Decimal expansion of sum_(n>=1) H(n)^3/n^4 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 3, 8, 1, 4, 6, 8, 3, 1, 0, 5, 0, 3, 8, 5, 2, 3, 7, 3, 0, 0, 4, 7, 8, 5, 1, 2, 0, 4, 0, 6, 6, 2, 2, 6, 9, 9, 9, 3, 3, 4, 4, 3, 5, 6, 3, 9, 0, 5, 3, 6, 1, 6, 9, 1, 0, 0, 0, 0, 8, 5, 3, 3, 0, 9, 5, 3, 8, 7, 2, 4, 2, 2, 3, 7, 7, 7, 5, 8, 4, 6, 7, 2, 9, 5, 9, 9, 3, 2, 6, 4, 5, 0, 9, 3, 0, 5, 7, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.38146831050385237300478512040662269993...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(231/16)*Zeta[7] - (51/4)*Zeta[3]*Zeta[4] + 2*Zeta[2]*Zeta[5], 10, 100][[1]] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    (231/16)*zeta(7) - (51/4)*zeta(3)*zeta(4) + 2*zeta(2)*zeta(5) \\ G. C. Greubel, Dec 30 2017

Formula

Equals (231/16)*Zeta(7) - (51/4)*Zeta(3)*Zeta(4) + 2*Zeta(2)*Zeta(5).
Showing 1-10 of 25 results. Next