cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061038 Denominator of 1/4 - 1/n^2.

Original entry on oeis.org

1, 36, 16, 100, 9, 196, 64, 324, 25, 484, 144, 676, 49, 900, 256, 1156, 81, 1444, 400, 1764, 121, 2116, 576, 2500, 169, 2916, 784, 3364, 225, 3844, 1024, 4356, 289, 4900, 1296, 5476, 361, 6084, 1600, 6724, 441, 7396, 1936, 8100, 529, 8836
Offset: 2

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Crossrefs

See A061037 for comments, references, links.
Cf. A145979. - Bruno Berselli, Mar 21 2011

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061038 n = denominator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [ Denominator(1/4-1/n^2): n in [2..50] ]; // Vincenzo Librandi, Feb 10 2011
    
  • Mathematica
    Table[Denominator[1/4 - 1/n^2], {n, 2, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{1,36,16,100,9,196,64,324, 25,484,144,676},50] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    a(n) = { denominator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
    
  • SageMath
    def A061038(n): return denominator(1/4 - 1/n^2)
    [A061038(n) for n in range(2,51)] # G. C. Greubel, Apr 18 2023

Formula

a(4n+2) = (2n+1)^2, a(2n+3) = (4n+6)^2, a(4n+4) = (4n+4)^2. - Ralf Stephan, Jun 10 2005
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 25 2011
From Bruno Berselli, Mar 21 2011: (Start)
G.f.: x^2*(1 +36*x +16*x^2 +100*x^3 +6*x^4 +88*x^5 +16*x^6 +24*x^7 +x^8 +4*x^9 +4*x^11)/(1-x^4)^3.
a(n) = (1/64)*( n*(16 - (1+(-1)^n)*(5-i^n)) )^2 with i=sqrt(-1).
a(n) = (n/(n-4))^2 * a(n-4) for n>5. (End)
a(n) = 4*n^2 / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=2} 1/a(n) = Pi^2/6 - 1/4. - Amiram Eldar, Aug 12 2022

Extensions

More terms from Stefan Steinerberger, Apr 08 2006