cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A061037 Numerator of 1/4 - 1/n^2.

Original entry on oeis.org

0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675
Offset: 2

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011
Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Cf. A061038 (denominators), A061035-A061050, A126252, A028347.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011
  • Magma
    [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011
    
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]
    f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)
    a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)
    Numerator[1/4-1/Range[2,60]^2] (* Harvey P. Dale, Aug 18 2011 *)
  • PARI
    a(n) = { numerator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
    

Formula

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.
a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005
a(n+2) = A060819(n) * A060819(n+4).
a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011
a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]
a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=3} 1/a(n) = 11/6. - Amiram Eldar, Aug 12 2022

A060819 a(n) = n / gcd(n,4).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 2, 9, 5, 11, 3, 13, 7, 15, 4, 17, 9, 19, 5, 21, 11, 23, 6, 25, 13, 27, 7, 29, 15, 31, 8, 33, 17, 35, 9, 37, 19, 39, 10, 41, 21, 43, 11, 45, 23, 47, 12, 49, 25, 51, 13, 53, 27, 55, 14, 57, 29, 59, 15, 61, 31, 63, 16, 65, 33, 67, 17, 69, 35, 71, 18, 73, 37, 75, 19
Offset: 1

Views

Author

Len Smiley, Apr 30 2001

Keywords

Comments

From Peter Bala, Feb 19 2019: (Start)
We make some general remarks about the sequence a(n) = numerator(n/(n + k)) = n/gcd(n,k) for k a fixed positive integer. The present sequence is the case k = 4. Several other cases are listed in the Crossrefs. In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m).
By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n, m) = 1 then a(a(n)*a(m) ) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*x^d/(1 - x^d)^2, where f(n) is the Dirichlet inverse of the Euler totient function A000010. f(n) is a multiplicative function defined on prime powers p^k by f(p^k) = 1 - p. See A023900. Cf. A181318. (End)

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - 2*G(x^2) - 4*G(x^4), where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (1/2)*H(x^2) - (1/4)*H(x^4), where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4^2)*L(x^4), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4). (End)
		

Crossrefs

Cf. A026741, A051176, A060791, A060789. Cf. Other sequences given by the formula numerator(n/(n + k)): A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

G.f.: x*(1 +x +3*x^2 +x^3 +3*x^4 +x^5 +x^6)/(1 - x^4)^2.
a(n) = 2*a(n-4) - a(n-8).
a(n) = (n/16)*(11 - 5*(-1)^n - i^n - (-i)^n). - Ralf Stephan, Mar 15 2003
a(2*n+1) = a(4*n+2) = 2*n+1, a(4*n+4) = n+1. - Ralf Stephan, Jun 10 2005
Multiplicative with a(2^e) = 2^max(0, e-2), a(p^e) = p^e, p >= 3. - Mitch Harris, Jun 29 2005
a(n) = A167192(n+4,4). - Reinhard Zumkeller, Oct 30 2009
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109045(n)/4.
Dirichlet g.f.: zeta(s-1)*(1-1/2^s-1/2^(2s)). (End)
a(n+4) - a(n) = A176895(n). - Paul Curtz, Apr 05 2011
a(n) = numerator(Sum_{k=1..n} 1/((k+1)*(k+2))). This summation has a closed form of 1/2 - 1/(n+2) and denominator of A145979(n). - Gary Detlefs, Sep 16 2011
a((2*n-1)*2^p) = ceiling(2^(p-2))*(2*n-1), p >= 0 and n >= 1. - Johannes W. Meijer, Feb 06 2013
a(n) = n / A109008(n). - Reinhard Zumkeller, Nov 25 2013
a(n) = denominator((2n-4)/n). - Wesley Ivan Hurt, Dec 22 2016
From Peter Bala, Feb 21 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4), where F(x) = x/(1 - x)^2.
More generally, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence a(n) produces generating functions for the sequences ((n^m)*a(n))n>=1 for m in Z. Some examples are given below.
(End)
Sum_{k=1..n} a(k) ~ (11/32) * n^2. - Amiram Eldar, Nov 25 2022
E.g.f.: x*(8*cosh(x) + sin(x) + 3*sinh(x))/8. - Stefano Spezia, Dec 02 2023

A145979 a(n) = (2*n + 4)/gcd(n,4).

Original entry on oeis.org

1, 6, 4, 10, 3, 14, 8, 18, 5, 22, 12, 26, 7, 30, 16, 34, 9, 38, 20, 42, 11, 46, 24, 50, 13, 54, 28, 58, 15, 62, 32, 66, 17, 70, 36, 74, 19, 78, 40, 82, 21, 86, 44, 90, 23, 94, 48, 98, 25, 102, 52, 106, 27, 110, 56, 114, 29, 118, 60, 122
Offset: 0

Views

Author

Paul Curtz, Oct 26 2008

Keywords

Comments

Previous name was: Square root of A061038(n+2).
a(n) = denominator(Sum_{k=1..n} 1/((k+1)*(k+2))), n > 0. This summation has a closed form of 1/2 - 1/(n+2) and numerator of A060819(n). - Gary Detlefs, Sep 16 2011
Prefixing this sequence with 2 makes it a shift of the involution b defined on positive integers by b(n) = n if 4|n, b(n) = 2n if n is odd, b(n) = n/2 if n mod 4 = 2. This sequence b, when n > 2, occurs as the number of congruent regular n-gons in various ways of making cycles of them by sticking them together along edges with constant rotation angle between the two stickings on any one n-gon. For example, it is well known that only the triangle, square and hexagon can make cycles going once around a common point. But allowing the n-gons to keep going any number of times around the common corner, they will eventually close up into a cycle for any n (since their corner interior angle is a rational multiple of Pi), and the number of n-gons in that cycle is b(n). - David Pasino, Nov 12 2017
Here is another example of b(n) in the behavior of regular polygons as said in the comment of Nov 12 2017. For integers n and k, both exceeding 2, consider congruent regular k-gon tiles arranged as a ring going once around a central region, each tile adjacent to two others by sharing an exact edge, such that, if possible for n and k, the centers of the k-gons are the vertices of a regular n-gon. Then for any given n, the numbers k for which this arrangement is possible are exactly the multiples of b(n). (In the cases where (n, k) is (3, 6) or (4, 4) or (6, 3), the central region is only a point.) - David Pasino, Feb 20 2018
The generating function of the rationals A060819(n)/a(n) = 1/2 - 1/(n+2), n >= 0, with A060819(0) = 0, mentioned in the comment on a sum by Gary Detlefs above is (1/2)*(1-hypergeom([1, 1], [3], -x/(1-x)))/(1-x) = (x*(2 - x) + 2*(1 - x)*log(1-x) )/(2*(1-x)*x^2). Thanks to him for leading me to Jolley's general remark (201) on p. 38 on such sums. - Wolfdieter Lang, Mar 08 2018
The above b(n) also relates rotoinversions (rotation + inversion through the origin) to rotoreflections (rotation + reflection in a plane normal to the rotation axis). An n-fold rotoinversion clockwise is the same as some number of b(n)-fold rotoreflections counterclockwise. The Schoenflies notation for point group symmetry common in chemistry describes improper rotations as rotoreflections, while the International (Hemann-Mauguin) notation favored in crystallography describes them as rotoinversions. - R. James Evans, Nov 06 2024

References

  • L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p. 38, (201). For the sum given in the comment by Gary Detlefs.

Crossrefs

Programs

  • GAP
    List([1..70],n->(2*n+4)/Gcd(n,4)); # Muniru A Asiru, Apr 08 2018
  • Magma
    [(2*n+4)/GCD(n,4): n in [0..70]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    seq(denom(1/2-1/(n+2)), n=0..25); # Gary Detlefs, Sep 16 2011
  • Mathematica
    Table[(2*n + 4)/GCD[n, 4], {n, 0, 50}] (* G. C. Greubel, Jan 29 2016 *)
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {1, 6, 4, 10, 3, 14, 8, 18}, 70] (* Vincenzo Librandi, Jan 29 2016 *)
    CoefficientList[ Series[(-2x^7 + 2x^5 + x^4 + 10x^3 + 4x^2 + 6x + 1)/(x^4 - 1)^2, {x, 0, 60}], x] (* Robert G. Wilson v, Nov 25 2016 *)
  • PARI
    a(n) = (2*n + 4)/gcd(n,4); \\ Michel Marcus, Jan 29 2016
    
  • Sage
    a = lambda n: (2 + n) / (2 - (n % 2) / 2 - (n % 4 != 0))
    [a(n) for n in range(60)] # Peter Luschny, Jan 17 2015
    

Formula

a(2n) = A022998(n+1). a(2n+1) = A016825(n+1) = 2*A005408(n+1).
a(4n) = 2n+1 = A005408(n). a(4n+2) = A008586(n+1) = 4*A000027(n+1).
From R. J. Mathar, Dec 08 2008: (Start)
a(n) = 2*a(n-4) - a(n-8).
G.f.: (1 + 6x + 4x^2 + 10x^3 + x^4 + 2x^5 - 2x^7) / ((x-1)^2*(1+x)^2*(x^2+1)^2). (End)
a(n) = (n+2)*(11 - 5*(-1)^n - i^n - (-i)^n)/8, where i is the imaginary unit. - Bruno Berselli, Feb 25 2011
a(n) = A060819(n) + A060819(n+4). - Paul Curtz, Mar 13 2011
a(n) = (2*n + 4)/gcd(n,4). - Joerg Arndt, Jan 17 2015
E.g.f.: (1/4)*(2*(4*x+3)*cosh(x) + (3*x+16)*sinh(x) + x*sin(x) - 2*cos(x)). - G. C. Greubel, Jan 29 2016
a(n) = b(n+2), for b as in comment of Nov 12 2017. Same b is b(n) = (2n)/gcd(2n, n+2). - David Pasino, Feb 20 2018
Sum_{k=0..n} a(k) ~ (11/16) * n^2. - Amiram Eldar, Oct 09 2023

Extensions

Edited by R. J. Mathar, Dec 08 2008
New name from Joerg Arndt, Jan 17 2015

A129194 a(n) = (n/2)^2*(3 - (-1)^n).

Original entry on oeis.org

0, 1, 2, 9, 8, 25, 18, 49, 32, 81, 50, 121, 72, 169, 98, 225, 128, 289, 162, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 450, 961, 512, 1089, 578, 1225, 648, 1369, 722, 1521, 800, 1681, 882, 1849, 968, 2025, 1058, 2209, 1152, 2401, 1250, 2601, 1352
Offset: 0

Views

Author

Paul Barry, Apr 02 2007

Keywords

Comments

The numerator of the integral is 2,1,2,1,2,1,...; the moments of the integral are 2/(n+1)^2. See 2nd formula.
The sequence alternates between twice a square and an odd square, A001105(n) and A016754(n).
Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011
Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013
Conjecture: denominator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016
Multiplicative because both A000290 and A040001 are. - Andrew Howroyd, Jul 25 2018

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73.

Crossrefs

Programs

Formula

G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3.
a(n+1) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*n*t)(-((Pi-t)/i)^2)), i=sqrt(-1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. - Paul Curtz, Mar 07 2011
a(n) is the numerator of the coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011
O.g.f. as a Lambert series: x*Sum_{n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Pólya and Szegő. - Peter Bala, Dec 28 2013
From Ilya Gutkovskiy, Jul 11 2016: (Start)
E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/24. [corrected by Amiram Eldar, Sep 11 2022] (End)
a(n) = A000290(n) / A040001(n). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Sep 11 2022
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} (-1)^(1 + gcd(i,j,n)) = Sum_{d | n} (-1)^(d+1) * J_2(n/d), that is, the Dirichlet convolution of the pair of multiplicative functions f(n) = (-1)^(n+1) and the Jordan totient function J_2(n) = A007434(n). Hence this sequence is multiplicative. Cf. A193356 and A309337.
Dirichlet g.f.: (1 - 2/2^s)*zeta(s-2). (End)
a(n) = Sum_{1 <= i, j <= n} (-1)^(n + gcd(i, n)*gcd(j, n)) = Sum_{d|n, e|n} (-1)^(n+e*d) * phi(n/d)*phi(n/e). - Peter Bala, Jan 22 2024

Extensions

More terms from Michel Marcus, Dec 28 2013

A209308 Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024
Offset: 0

Views

Author

Paul Curtz, Jan 18 2013

Keywords

Comments

1/2^n and successive rows are
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,...
1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 7/128, 1/32,... = A000265/A075101, the Oresme numbers n/2^n. Paul Curtz, Jan 18 2013 and May 11 2016
0, 1/4, 3/8, 3/8, 5/16, 15/64, 21/128,... = (0 before A069834)/new,
-1/4, -1/4, 0, 1/4, 25/64, 27/64,...
0, -1/2, -3/4, -9/16, -5/32,...
1/2, 1/2, -9/16, -13/8,...
0, 17/8, 51/16,...
-17/8, -17/8,...
0
The first column is A198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,... in A060096.
Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1, ... .
Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512, ... = -A075677/new, from Collatz problem.
There are three different Bernoulli numbers:
The first Bernoulli numbers are 1, -1/2, 1/6, 0,... = A027641(n)/A027642(n).
The second Bernoulli numbers are 1, 1/2, 1/6, 0,... = A164555(n)/A027642(n). These are the binomial transform of the first one.
The third Bernoulli numbers are 1, 0, 1/6, 0,... = A176327(n)/A027642(n), the half sum. Via A177427(n) and A191567(n), they yield the Balmer series A061037/A061038.
There are three different fractional Euler numbers:
1) The first are 1, -1/2, 0, 1/4, 0, -1/2,... in A060096(n).
Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... = A000225(n+1)/A000079(n) ).
2) The second are 1, 1/2, 0, -1/4, 0, 1/2,... , mentioned by Wolfdieter Lang in A198631(n).
3) The third are 0, 1/2, 0, -1/4, 0, 1/2,... , half difference of 2) and 1).
Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... = A000225(n)/A000079(n) ). See A097110(n).

Examples

			Triangle begins:
  1,
  2, 2,
  1, 2,  4,
  4, 4,  8,  8,
  1, 4,  8,  4, 16,
  2, 2,  1,  8, 32, 32,
  1, 2,  4,  4, 16, 32,  64,
  8, 8, 16, 16, 64, 64, 128, 128,
  ...
		

Crossrefs

Cf. Second Bernoulli numbers A164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1), A272263.

Programs

  • Mathematica
    max = 10; t[0, k_] := 1/2^k; t[n_, k_] := t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2013 *)

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A168077 a(2n) = A129194(2n)/2; a(2n+1) = A129194(2n+1).

Original entry on oeis.org

0, 1, 1, 9, 4, 25, 9, 49, 16, 81, 25, 121, 36, 169, 49, 225, 64, 289, 81, 361, 100, 441, 121, 529, 144, 625, 169, 729, 196, 841, 225, 961, 256, 1089, 289, 1225, 324, 1369, 361, 1521, 400, 1681, 441, 1849, 484, 2025, 529, 2209, 576, 2401, 625, 2601
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

From Paul Curtz, Mar 26 2011: (Start)
Successive A026741(n) * A026741(n+p):
p=0: 0, 1, 1, 9, 4, 25, 9, a(n),
p=1: 0, 1, 3, 6, 10, 15, 21, A000217,
p=2: 0, 3, 2, 15, 6, 35, 12, A142705,
p=3: 0, 2, 5, 9, 14, 20, 27, A000096,
p=4: 0, 5, 3, 21, 8, 45, 15, A171621,
p=5: 0, 3, 7, 12, 18, 25, 33, A055998,
p=6: 0, 7, 4, 27, 10, 55, 18,
p=7: 0, 4, 9, 15, 22, 30, 39, A055999,
p=8: 0, 9, 5, 33, 12, 65, 21, (see A061041),
p=9: 0, 5, 11, 18, 26, 35, 45, A056000. (End)
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (-4 * log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
Multiplicative because both A129194 and A040001 are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

  • Magma
    I:=[0,1,1,9,4,25]; [n le 6 select I[n] else 3*Self(n-2)-3*Self(n-4)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2016
    
  • Maple
    a := proc(n): n^2*(5-3*(-1)^n)/8 end: seq(a(n), n=0..46); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,1,1,9,4,25},60] (* Harvey P. Dale, May 14 2011 *)
    f[n_] := Numerator[(n/2)^2]; Array[f, 60, 0] (* Robert G. Wilson v, Dec 18 2012 *)
    CoefficientList[Series[x(1+x+6x^2+x^3+x^4)/((1-x)^3(1+x)^3), {x,0,60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
  • PARI
    concat(0, Vec(x*(1+x+6*x^2+x^3+x^4)/((1-x)^3*(1+x)^3) + O(x^60))) \\ Altug Alkan, Jul 04 2016
    
  • PARI
    a(n) = lcm(4, n^2)/4; \\ Andrew Howroyd, Jul 26 2018
    
  • Sage
    (x*(1+x+6*x^2+x^3+x^4)/(1-x^2)^3).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 20 2019

Formula

From R. J. Mathar, Jan 22 2011: (Start)
G.f.: x*(1 + x + 6*x^2 + x^3 + x^4) / ((1-x)^3*(1+x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(n) = n^2*(5 - 3*(-1)^n)/8. (End)
a(n) = A026741(n)^2.
a(2*n) = A000290(n); a(2*n+1) = A016754(n).
a(n) - a(n-4) = 4*A064680(n+2). - Paul Curtz, Mar 27 2011
4*a(n) = A061038(n) * A010121(n+2) = A109043(n)^2, n >= 2. - Paul Curtz, Apr 07 2011
a(n) = A129194(n) / A040001(n). - Andrew Howroyd, Jul 26 2018
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 4)) = n^2/(gcd(n^2,4)) = (n/gcd(n,2))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 4, ...] is a purely periodic sequence of period 2. Thus a(n) is a quasi-polynomial in n.
O.g.f.: x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3.
Cf. A181318. (End)
From Werner Schulte, Aug 30 2020: (Start)
Multiplicative with a(2^e) = 2^(2*e-2) for e > 0, and a(p^e) = p^(2*e) for prime p > 2.
Dirichlet g.f.: zeta(s-2) * (1 - 3/2^s).
Dirichlet convolution with A259346 equals A000290.
Sum_{n>0} 1/a(n) = Pi^2 * 7 / 24. (End)
Sum_{k=1..n} a(k) ~ (5/24) * n^3. - Amiram Eldar, Nov 28 2022

A171522 Denominator of 1/n^2-1/(n+2)^2.

Original entry on oeis.org

0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

This is the third column in the table of denominators of the hydrogenic spectra (the main diagonal A147560):
0, 0, 0, 0, 0, 0, 0, 0... A000004
1, 4, 9, 16, 25, 36, 49, 64... A000290
1, 36, 16, 100, 9, 196, 64, 324... A061038
1, 144, 225, 12, 441, 576, 81, 900... A061040
1, 400, 144, 784, 64,1296, 400,1936... A061042
1, 900 1225,1600,2025, 100,3025,3600... A061044
1,1764, 576, 324, 225,4356, 48,6084... A061046
1,3136,3969,4900,5929,7056,8281, 196... A061048.

Crossrefs

Cf. A105371. Bisections: A060300, A069075.

Programs

  • Maple
    A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
    seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014

Formula

a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009

A126252 Wavenumbers of red, turquoise, blue, indigo and violet in the spectrum of hydrogen, as first measured by Robert Bunsen and Gustav Kirchhoff in 1859.

Original entry on oeis.org

1523310, 2056410, 2303240, 2437290, 2518130
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2006

Keywords

Comments

How Johann Jakob Ballmer found his formula in 1885 by analyzing and manipulating the ratios of these data:
r(1) = a(1)/a(1) = 1,
a(2)/a(1) = 1.349961..., rounded: r(2) = 135/100 = 27/20,
a(3)/a(1) = 1.511996..., rounded: r(3) = 1512/1000 = 189/125,
a(4)/a(1) = 1.599996..., rounded: r(4) = 16/10 = 8/5,
a(5)/a(1) = 1.6530647..., r(5) = 81/49 = 2-1/(3-1/(9-1/2)), derived from a(5)/a(1) = 2-1/(3-1/(9-3095/6216)) when replacing 3095/6216 by 1/2;
the multiplication of these fractions by 5/36 is the key trick to get more handy figures to see eventually increasing squares in the denominators by an appropriate expansion:
b(1) = r(1)*5/36 = 5 / 36,
b(2) = r(2)*5/36 = 3 / 16,
b(3) = r(3)*5/36 = 21 / 100,
b(4) = r(4)*5/36 = 2 / 9,
b(5) = r(5)*5/36 = 45 / 196;
... b(1) .|.... b(2) ..|.... b(3) ..|.... b(4) ..|.... b(5),
... 5/36 .|.... 3/16 ..|... 21/100 .|.... 2/9 ...|... 45/196,
... 5/36 .|... 12/64 ..|... 21/100 .|... 32/144 .|... 45/196,
(9-4)/9*4 |(16-4)/16*4 |(25-4)/25*4 |(36-4)/36*4 |(49-4)/49*4,
this last step was the crowning achievement: the discovery of the pattern (x-y)/x*y,
b(n) = ((n+2)^2 - 4)/(4*(n+2)^2) = 1/4 - 1/(n+2)^2;
1<=n<=5: b(n) = A061037(n+2)/A061038(n+2) = A120072(n+2,2)/A120073(n+2,2).

References

  • R. Taschner, Der Zahlen gigantischer Schatten, Vieweg 2005, 137-143.
Showing 1-10 of 32 results. Next