A173630 Denominator of A002445(n)/A145979(n).
1, 1, 2, 5, 1, 7, 4, 3, 1, 11, 2, 13, 1, 5, 8, 17, 3, 19, 2, 7, 1, 23, 4, 25, 1, 9, 14, 29, 1, 31
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Peter Bala_, Feb 21 2019: (Start) Sum_{n >= 1} n*a(n)*x^n = G(x) - 2*G(x^2) - 4*G(x^4), where G(x) = x*(1 + x)/(1 - x)^3. Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (1/2)*H(x^2) - (1/4)*H(x^4), where H(x) = x/(1 - x). Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4^2)*L(x^4), where L(x) = Log(1/(1 - x)). Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4). (End)
List([1..80],n->n/Gcd(n,4)); # Muniru A Asiru, Feb 20 2019
a060819 n = n `div` a109008 n -- Reinhard Zumkeller, Nov 25 2013
[n/GCD(n,4): n in [1..80]]; // G. C. Greubel, Sep 19 2018
A060819 := n -> numer(1/2-1/(n+2)): seq(A060819(n),n=1..75); # Gary Detlefs, Sep 16 2011
f[n_]:= n/GCD[n, 4]; Array[f, 80]
a(n) = { n / gcd(n, 4) } \\ Harry J. Smith, Jul 12 2009
[lcm(n,4)/4 for n in (1..80)] # Zerinvary Lajos, Jun 07 2009
import Data.Ratio ((%), denominator) a061038 n = denominator (1%4 - 1%n^2) -- Reinhard Zumkeller, Jan 22 2012
[ Denominator(1/4-1/n^2): n in [2..50] ]; // Vincenzo Librandi, Feb 10 2011
Table[Denominator[1/4 - 1/n^2], {n, 2, 60}] (* Stefan Steinerberger, Apr 08 2006 *) LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{1,36,16,100,9,196,64,324, 25,484,144,676},50] (* Harvey P. Dale, Aug 05 2018 *)
a(n) = { denominator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
def A061038(n): return denominator(1/4 - 1/n^2) [A061038(n) for n in range(2,51)] # G. C. Greubel, Apr 18 2023
f[n_] := If[ OddQ@ n, (3n +1)/2, (3n +1)]; Array[f, 66, 0] (* Robert G. Wilson v, Jan 26 2015 *) f[n_] := (3 (-1)^(2n) + (-1)^(1 + n)) (-2 + 3n)/4; Array[f, 66] (* or *) CoefficientList[ Series[(x^3 + 5x^2 + 2x + 1)/(x^2 - 1)^2, {x, 0, 65}], x] (* or *) LinearRecurrence[{0, 2, 0, -1}, {1, 2, 7, 5}, 66] (* Robert G. Wilson v, Apr 13 2017 *)
a(n)=n+=2*n+1; if(n%2,n,n/2) \\ Charles R Greathouse IV, Jan 13 2015
[(2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
A214297 := proc(n) option remember; if n <=5 then op(n+1,[-1,0,-3,2,3,6]) ; else 2*procname(n-1)-procname(n-2)+procname(n-4)-2*procname(n-5)+procname(n-6) ; end if; end proc: # R. J. Mathar, Jun 28 2013
Table[(2 n^2 - 11 - 9 (-1)^n + 6 ((-1)^((2 n + 1 - (-1)^n)/4) + (-1)^((2 n - 1 + (-1)^n)/4)))/8, {n, 0, 69}] (* or *) CoefficientList[Series[-(1 - 2 x + 4 x^2 - 8 x^3 + 3 x^4)/((1 - x)^2*(1 - x^4)), {x, 0, 69}], x] (* Michael De Vlieger, Mar 24 2017 *)
vector(100, n, n--; (2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8) \\ G. C. Greubel, Sep 19 2018
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 1 2: 2 1 3: 3 6 3 4: 4 4 12 2 5: 5 10 15 20 5 6: 6 3 2 12 30 3 7: 7 14 21 28 35 42 7 8: 8 8 24 8 40 24 56 4 9: 9 18 9 36 45 18 63 72 9 10: 10 5 30 20 10 15 70 40 90 5 11: 11 22 33 44 55 66 77 88 99 110 11 12: 12 12 12 3 60 4 84 24 36 60 132 6 ... a(n,1) = n because 1/R(n,1) = 1/n +1/1 = (n+1)/n, hence a(n,1) = denominator(1/n +1/1/) = n = numerator(R(n,1)). a(5,3) = denominator(1/5 + 1/3) = denominator(8/15 ) = 15. a(6,3) = denominator(1/6 + 1/3) = denominator(9/18 ) = denominator(1/2) = 2. The triangle of rationals R(n,m) = n*m/(n+m) = a(n,m)/A221919(n,m) given by 1/R(n,m) = 1/n + 1/m starts: n\m 1 2 3 4 5 6 7 8 9 10 1: 1/2 2: 2/3 1 3: 3/4 6/5 3/2 4: 4/5 4/3 12/7 2 5: 5/6 10/7 15/8 20/9 5/2 6: 6/7 3/2 2 12/5 30/11 3 7: 7/8 14/9 21/10 28/11 35/12 42/13 7/2 8: 8/9 8/5 24/11 8/3 40/13 24/7 56/15 4 9: 9/10 18/11 9/4 36/13 45/14 18/5 63/16 72/17 9/2 10: 10/11 5/3 30/13 20/7 10/3 15/4 70/17 40/9 90/19 5 ...
a[n_, m_] := Denominator[1/n + 1/m]; Table[a[n, m], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2013 *)
The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to Bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as: 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140, ... 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22, ... 1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66, ... 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ... -1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495, ... 0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ... 1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ...
t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
[Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
A208950(n) := block( [a,npr] , if equal(mod(n,4), 0) then ( a : n/12*(n^2-1) ) else if equal(mod(n,2),0) then ( a : (n-1)*n*(n+1)/6 ) else ( npr : (n-1)/2, a : npr*(npr+1)*n/6 ) , return(a) )$ /* R. J. Mathar, Mar 10 2012 */
vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
For the first formula: a(0)=-1+1=0, a(1)=-3+5=2, a(2)=-1+3=2, a(3)=-1+7=6, a(4)=0+1=1.
a[0]=0; a[n_] := Sqrt[Denominator[1/4 - 4/n^2]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, May 30 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,2,2,6,1,10,6,14,4,18,10,22,3,26,14,30},60] (* Harvey P. Dale, Nov 21 2019 *)
Comments