cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008585 a(n) = 3*n.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
Offset: 0

Views

Author

Keywords

Comments

If n != 1 and n^2+2 is prime then n is a member of this sequence. - Cino Hilliard, Mar 19 2007
Multiples of 3. Positive members of this sequence are the third transversal numbers (or 3-transversal numbers): Numbers of the 3rd column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 3rd column in the square array A057145. - Omar E. Pol, May 02 2008
Numbers n for which polynomial 27*x^6-2^n is factorizable. - Artur Jasinski, Nov 01 2008
1/7 in base-2 notation = 0.001001001... = 1/2^3 + 1/2^6 + 1/2^9 + ... - Gary W. Adamson, Jan 24 2009
A165330(a(n)) = 153 for n > 0; subsequence of A031179. - Reinhard Zumkeller, Sep 17 2009
A011655(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
A215879(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2012
Moser conjectured, and Newman proved, that the terms of this sequence are more likely to have an even number of 1s in binary than an odd number. The excess is an undulating multiple of n^(log 3/log 4). See also Coquet, who refines this result. - Charles R Greathouse IV, Jul 17 2013
Integer areas of medial triangles of integer-sided triangles.
Also integer subset of A188158(n)/4.
A medial triangle MNO is formed by joining the midpoints of the sides of a triangle ABC. The area of a medial triangle is A/4 where A is the area of the initial triangle ABC. - Michel Lagneau, Oct 28 2013
From Derek Orr, Nov 22 2014: (Start)
Let b(0) = 0, and b(n) = the number of distinct terms in the set of pairwise sums {b(0), ... b(n-1)} + {b(0), ... b(n-1)}. Then b(n+1) = a(n), for n > 0.
Example: b(1) = the number of distinct sums of {0} + {0}. The only possible sum is {0} so b(1) = 1. b(2) = the number of distinct sums of {0,1} + {0,1}. The possible sums are {0,1,2} so b(2) = 3. b(3) = the number of distinct sums of {0,1,3} + {0,1,3}. The possible sums are {0, 1, 2, 3, 4, 6} so b(3) = 6. This continues and one can see that b(n+1) = a(n). (End)
Number of partitions of 6n into exactly 2 parts. - Colin Barker, Mar 23 2015
Partial sums are in A045943. - Guenther Schrack, May 18 2017
Number of edges in a maximal planar graph with n+2 vertices, n > 0 (see A008486 comments). - Jonathan Sondow, Mar 03 2018
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 3. - Stefano Spezia, Jul 08 2025

Examples

			G.f.: 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.

Crossrefs

Row / column 3 of A004247 and of A325820.
Cf. A016957, A057145, A139600, A139606, A001651 (complement), A032031 (partial products), A190944 (binary), A061819 (base 4).

Programs

Formula

G.f.: 3*x/(1-x)^2. - R. J. Mathar, Oct 23 2008
a(n) = A008486(n), n > 0. - R. J. Mathar, Oct 28 2008
G.f.: A(x) - 1, where A(x) is the g.f. of A008486. - Gennady Eremin, Feb 20 2021
a(n) = Sum_{k=0..inf} A030308(n,k)*A007283(k). - Philippe Deléham, Oct 17 2011
E.g.f.: 3*x*exp(x). - Ilya Gutkovskiy, May 18 2016
From Guenther Schrack, May 18 2017: (Start)
a(3*k) = a(a(k)) = A008591(n).
a(3*k+1) = a(a(k) + 1) = a(A016777(n)) = A017197(n).
a(3*k+2) = a(a(k) + 2) = a(A016789(n)) = A017233(n). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A061818 Multiples of 2 containing only digits 0,1,2.

Original entry on oeis.org

0, 2, 10, 12, 20, 22, 100, 102, 110, 112, 120, 122, 200, 202, 210, 212, 220, 222, 1000, 1002, 1010, 1012, 1020, 1022, 1100, 1102, 1110, 1112, 1120, 1122, 1200, 1202, 1210, 1212, 1220, 1222, 2000, 2002, 2010, 2012, 2020, 2022, 2100, 2102, 2110, 2112, 2120
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			102 is a term containing digits less than 3.
		

Crossrefs

Cf. A061819, etc. Ternary representation of A007494.

Programs

  • Mathematica
    Select[2*Range[0,1100],Max[IntegerDigits[#]]<3&] (* Harvey P. Dale, Jun 21 2025 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001

A061820 Multiples of 4 containing only digits 0,...,4.

Original entry on oeis.org

0, 4, 12, 20, 24, 32, 40, 44, 100, 104, 112, 120, 124, 132, 140, 144, 200, 204, 212, 220, 224, 232, 240, 244, 300, 304, 312, 320, 324, 332, 340, 344, 400, 404, 412, 420, 424, 432, 440, 444, 1000, 1004, 1012, 1020, 1024, 1032, 1040, 1044, 1100, 1104, 1112
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			140 is a term containing digits less than 5.
		

Crossrefs

Programs

  • Mathematica
    Select[4Range[0,400],Max[IntegerDigits[#]]<5&] (* Harvey P. Dale, Dec 20 2012 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001

A061821 Multiples of 5 containing only digits 0,...,5.

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 400, 405, 410, 415, 420, 425, 430
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			145 is a term containing digits less than 6.
		

Crossrefs

Programs

  • Mathematica
    Select[5Range[0,90],Max[IntegerDigits[#]]<6&] (* Harvey P. Dale, May 02 2011 *)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001

A061822 Multiples of 6 containing only digits 0,...,6.

Original entry on oeis.org

0, 6, 12, 24, 30, 36, 42, 54, 60, 66, 102, 114, 120, 126, 132, 144, 150, 156, 162, 204, 210, 216, 222, 234, 240, 246, 252, 264, 300, 306, 312, 324, 330, 336, 342, 354, 360, 366, 402, 414, 420, 426, 432, 444, 450, 456, 462, 504, 510, 516, 522, 534, 540, 546, 552
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			156 is a term containing digits less than 7.
		

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001

A061823 Multiples of 7 containing only digits 0,...,7.

Original entry on oeis.org

0, 7, 14, 21, 35, 42, 56, 63, 70, 77, 105, 112, 126, 133, 140, 147, 154, 161, 175, 203, 210, 217, 224, 231, 245, 252, 266, 273, 301, 315, 322, 336, 343, 350, 357, 364, 371, 406, 413, 420, 427, 434, 441, 455, 462, 476, 504, 511, 525, 532, 546, 553, 560, 567, 574
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Examples

			147 =7*21, is a term containing digits less than 8.
		

Crossrefs

Programs

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001

A061824 Multiples of 8 containing only the digits 0, ..., 8.

Original entry on oeis.org

0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 400, 408, 416, 424, 432, 440, 448, 456, 464
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

Subsequence of A008590. - Michel Marcus, Nov 28 2014

Examples

			288 = 8*36 is a term containing no digit 9.
The first multiple of 8 that is not here is 96.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {for (n=0, nn, d = vecsort(digits(m=8*n)); if (!vecsearch(d, 9), print1(m, ", ")););} \\ Michel Marcus, Nov 28 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Offset changed to 1 by Michel Marcus, Nov 28 2014
Showing 1-7 of 7 results.