cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062137 Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).

Original entry on oeis.org

1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,3,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^4. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
These polynomials appear in the radial part of the l=1 (p-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference.
The unsigned version of this triangle is the triangle of unsigned 2-Lah numbers A143497. - Peter Bala, Aug 25 2008
This matrix (unsigned) is embedded in that for n!*L(n,-3,-x). Introduce 0,0,0 to each unsigned row and then add 1,-2,1,4,2,1 to the beginning of the array as the first three rows to generate n!*L(n,-3,-x). - Tom Copeland, Apr 21 2014
From Wolfdieter Lang, Jul 07 2014: (Start)
The standard Rodrigues formula for the monic generalized Laguerre polynomials (also called Laguerre-Sonin polynomials) is Lm(n,alpha,x) := (-1)^n*n!*L(n,3,x) is x^(-alpha)*exp(x)*(d/dx)^n(exp(-x)*x^(n+alpha)).
Another Rodrigues type formula is Lm(n,alpha,x) = exp(x)*x^(-alpha+n+1)*(-x^2*d/dx)^n*(exp(-x)*x^(alpha+1)). This is derivable from the differential - difference relation of Lm(n,alpha,x) which yields first the creation operator formula -(x*d/dx + (-x + alpha + n + 1))*Lm(n,alpha,x) = Lm(n+1,alpha,x) or in the variable q = log(x) the operator -(d/dq + alpha + n + 1 - exp(q)).
The identity (due to Christoph Mayer) (d/dq - (d/dq)W(q))*f(q) = exp(W(q)*d/dq(exp(-W(q)*f(q)) is then iterated with W(q) = W(alpha,n,q) = exp(q) - (alpha + n + 1)*q and a further change of variables leads then to the given result. (End)

Examples

			The triangle a(n,m) begins:
n\m       0        1       2     3    4   5 ...
0:        1
1:        4       -1
2:       20      -10      1
3:      120      -90     18     -1
4:      840     -840    252    -28    1
5:     6720    -8400   3360   -560   40  -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
		

References

  • A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.

Crossrefs

For m=0..5 the (unsigned) columns give A001715, A061206, A062141-A062144. The row sums (signed) give A062146, the row sums (unsigned) give A062147.
Cf. A143497. - Peter Bala, Aug 25 2008
Cf. A062139, A105278. - Wolfdieter Lang, Jul 07 2014

Programs

  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021

Formula

a(n, m) = ((-1)^m)*n!*binomial(n+3, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^4), m >= 0.

A143497 Triangle of unsigned 2-Lah numbers.

Original entry on oeis.org

1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062137. The unsigned 2-Lah number L(2; n,k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1 and 2 must belong to different lists. More generally, the unsigned r-Lah number L(r; n, k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1, 2, ..., r belong to different lists. If r = 1 there is no restriction and we obtain the unsigned Lah numbers A105278. For other cases see A143498 (r=3) and A143499 (r=4). We make some remarks on the general case.
The unsigned r-Lah numbers occur as connection constants in the generalized Lah identity (x + 2*r - 1)*(x + 2*r)*...*(x + 2*r + n - r - 2) = Sum_{k=r..n} L(r; n, k)*(x - 1)*(x - 2)*...*(x - k + r) for n >= r and where any empty products are taken equal to 1 (for a bijective proof of the identity, follow the proof of [Petkovsek and Pisanski] but restrict the first r of the Argonauts to different paths).
The unsigned r-Lah numbers satisfy the same recurrence as the unsigned Lah numbers, namely, L(r; n, k) = (n + k - 1)*L(r; n - 1,k) + L(r; n - 1,k - 1), but with the boundary conditions: L(r; n, k) = 0 if n < r or if k < r; L(r; r, r) = 1. The recurrence has the explicit solution L(r; n, k) = ((n - r)!/(k - r)!)*binomial(n + r - 1, k + r - 1) for n, k >= r. It follows that the unsigned r-Lah numbers have 'vertical' generating functions for k >= r of the form Sum_{n>=k} L(r; n, k)*t^n/(n -r)! = 1/(k - r)!*t^k/(1 - t)^(k + r). This yields the e.g.f. for the array of unsigned r-restricted Lah numbers in the form: Sum_{n,k>=r} L(r; n, k)*x^k*t^n/(n-r)! = (x*t)^r * 1/(1 - t)^(2*r) * exp(x*t/(1 - t)) = (x*t)^r (1 + (2*r + x)*t + (2r*(2*r + 1) + 2*(2*r + 1)*x + x^2)*t^2/2! + ...).
The array of unsigned r-Lah numbers begins
1
2r 1
2r*(2r+1) 2*(2r+1) 1
2r*(2r+1)*(2r+2) 3*(2r+1)*(2r+2) 3*(2r+2) 1
...
and equals exp(D(r)), where D(r) is the array with the sequence (2*r, 2*(2*r + 1), 3*(2*r + 2), 4*(2*r + 3), ...) on the main subdiagonal and zeros everywhere else.
The unsigned r-Lah numbers are related to the r-Stirling numbers: the lower triangular array of unsigned r-Lah numbers may be expressed as the matrix product St1(r) * St2(r), where St1(r) and St2(r) denote the arrays of r-Stirling numbers of the first and second kind respectively. The theory of r-Stirling numbers is developed in [Broder]. See A143491 - A143496 for tables of r-Stirling numbers. An alternative factorization for the array is as St1 * P^(2r - 2) * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
The array of unsigned r-Lah numbers is an example of the fundamental matrices sketched in A133314. So redefining the offset as n=0, given matrices A and B with A(n, k) = T(n, k)*a(n - k) and B(n, k) = T(n, k)*b(n - k), then A*B = C where C(n, k) = T(n,k)*[a(.) + b(.)]^(n - k), umbrally. An e.g.f. for the row polynomials of A is exp(x*t) exp{-x*t*[a*t/(a*t - 1)]}/(1 - a*t)^4 = exp(x*t) exp[(.)!*Laguerre(., 3, -x*t)* a(.)*t)], umbrally. - Tom Copeland, Sep 19 2008

Examples

			Triangle begins:
=========================================
n\k |     2     3     4     5     6     7
----+------------------------------------
  2 |     1
  3 |     4     1
  4 |    20    10     1
  5 |   120    90    18     1
  6 |   840   840   252    28     1
  7 |  6720  8400  3360   560    40     1
 ...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
		

Crossrefs

Cf. A001715 (column 2), A007318, A008275, A008277, A061206 (column 3), A062137, A062141 - A062144 ( column 4 to column 7), A062146 (alt. row sums), A062147 (row sums), A105278 (unsigned Lah numbers), A143491, A143494, A143498, A143499.

Programs

  • GAP
    T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
  • Maple
    T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
    for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
  • Mathematica
    T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
  • Maxima
    create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
    

Formula

T(n, k) = ((n - 2)!/(k - 2)!)*C(n+1, k+1), for n, k >= 2.
Recurrence: T(n, k) = (n + k - 1)*T(n-1, k) + T(n-1, k-1) for n, k >= 2, with the boundary conditions: T(n, k) = 0 if n < 2 or k < 2; T(2, 2) = 1.
E.g.f. for column k: Sum_{n>=k} T(n, k)*t^n/(n - 2)! = 1/(k - 2)!*t^k/(1 - t)^(k+2) for k >= 2.
E.g.f: Sum_{n=2..inf} Sum_{k=2..n} T(n, k)*x^k*t^n/(n - 2)! = (x*t)^2/(1 - t)^4* exp(x*t/(1 - t)) = (x*t)^2*(1 + (4 + x)*t + (20 + 10*x + x^2)*t^2/2! + ... ).
Generalized Lah identity: (x + 3)*(x + 4)*...*(x + n) = Sum_{k = 2..n} T(n, k)*(x - 1)*(x - 2)*...*(x - k + 2).
The polynomials 1/n!*Sum_{k=2..n+2} T(n+2, k)*(-x)^(k - 2) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,3,x). See A062137.
Array = A143491 * A143494 = abs(A008275) * (A007318)^2 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (4, 10, 18, 28, ...) on the main subdiagonal and zeros elsewhere.
After adding 1 to the head of the main diagonal and a zero to each of the subdiagonals, the n-th diagonal may be generated as coefficients of (1/n!) [D^(-1) tDt t^(-3)D t^3]^n exp(x*t), where D is the derivative w.r.t. t and D^(-1) t^j/j! = t^(j + 1)/(j + 1)!. E.g., n = 2 generates 20*x*t^3/3! + 90*x^2*t^4/4! + 252*x^3* t^5/5! + ... . For the general unsigned r-Lah number array, replace the threes by (2*r - 1) in the operator. The e.g.f. of the row polynomials is then exp[D^(-1) tDt t^(-(2*r-1))D t^(2*r - 1)] exp(x*t), with offset n = 0. - Tom Copeland, Sep 21 2008

A062142 Fourth (unsigned) column sequence of coefficient triangle A062137 of generalized Laguerre polynomials n!*L(n,3,x).

Original entry on oeis.org

1, 28, 560, 10080, 176400, 3104640, 55883520, 1037836800, 19978358400, 399567168000, 8310997094400, 179819755315200, 4045944494592000, 94612855873536000, 2297740785500160000, 57903067794604032000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Examples

			a(3) = (3+3)!*binomial(3+6,6)/3! = (720*84)/6 = 10080. - _Indranil Ghosh_, Feb 23 2017
		

Crossrefs

Programs

  • Magma
    [Factorial(n+3)*Binomial(n+6,6)/6: n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+3)!*Binomial[n+6,6]/3!,{n,0,15}] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    a(n) =(n+3)!*binomial(n+6,6)/3! \\ Indranil Ghosh, Feb 23 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r):
        return f(n)/f(r)/f(n-r)
    def A062142(n):return f(n+3)*C(n+6,6)/f(3) # Indranil Ghosh, Feb 23 2017
    
  • Sage
    [binomial(n,6)*factorial(n-3)/factorial(3) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

a(n) = (n+3)!*binomial(n+6, 6)/3!; e.g.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=1..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j), then a(n-3) = (-1)^(n-1)*f(n,3,-7), (n>=3). - Milan Janjic, Mar 01 2009
Showing 1-3 of 3 results.