cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A249759 Primes p such that sigma(p-1) is a prime q.

Original entry on oeis.org

3, 5, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2014

Keywords

Comments

Subsequence of {A023194(n)+1}.
Conjectures: 1) sequence is finite; 2) sequence is a subsequence of A019434 (Fermat primes); 3) sequence consists of Fermat primes p such that sigma(p-1) is a Mersenne prime; 4) a(n) = (A249761(n)+3)/2.
3 is the only prime p such that sigma(p+1) is prime, i.e., 3 is the only prime p such that sigma(p-1) and sigma(p+1) are both primes.
Conjecture: 3 is the only number n such that n and sigma(n+1) are both prime.
Primes p such that A051027(p-1) = sigma(sigma(p-1)) = 2*(p-1). Subsequence of A256438. - Jaroslav Krizek, Mar 29 2015
From Jaroslav Krizek, Mar 17 2016: (Start)
Primes p such that A000203(A000010(p)) = sigma(phi(p)) is a prime.
Prime terms from A062514 and A270413, A270414, A270415 and A270416. (End)
From Jaroslav Krizek, Nov 27 2016: (Start)
Corresponding values of primes q are in A249761: 3, 7, 31, 131071, ...
Conjecture: subsequence of A256438 and A278741.
Conjecture: also primes p such that tau(p-1) is a prime q; corresponding values of primes q are 2, 3, 5, 17. (End)

Examples

			Prime 17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000000) | IsPrime(SumOfDivisors(p-1))]
    
  • Maple
    with(numtheory): A249759:=n->`if`(isprime(n) and isprime(sigma(n-1)), n, NULL): seq(A249759(n), n=1..6*10^5); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[10^5], PrimeQ[#]&& PrimeQ[DivisorSigma[1, # - 1]] &] (* Vincenzo Librandi, Nov 14 2014 *)
    Select[Prime[Range[7000]],PrimeQ[DivisorSigma[1,#-1]]&] (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    lista(nn) = {forprime(p=1, nn, if (isprime(sigma(p-1)), print1(p, ", ")););} \\ Michel Marcus, Nov 14 2014

Formula

a(n) = A249760(n) + 1.
Sigma(a(n)-1) = A249761(n).

A270414 Numbers m such that sigma(m-1) and sigma(phi(m)) are both primes.

Original entry on oeis.org

3, 5, 10, 17, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Numbers n such that A000203(n-1) and A062402(n) are both primes.
There are no other terms <= 10^7.
Intersection of A270413 and A062514.
Prime terms are in A249759.
Corresponding values of sigma(n-1): 3, 7, 13, 31, 131071, ...
Corresponding values of sigma(phi(n)): 3, 7, 7, 31, 131071, ...
Conjecture: union of number 10 and A249759.

Examples

			10 is in the sequence because sigma(10-1) = sigma(9) = 13 and sigma(phi(10)) = sigma(4) = 7 (both primes).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] |  IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(EulerPhi(n)))];
    
  • Mathematica
    Select[Range[10^6], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n-1)) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016

A065875 Numbers k such that usigma(phi(k)) is a prime.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 65537, 131072, 131074, 131584, 139264, 139808, 163840, 164480, 174080, 174760, 196608, 197376, 208896, 209712, 245760, 246720, 261120, 262140
Offset: 1

Views

Author

Robert G. Wilson v, Dec 07 2001

Keywords

Comments

The only odd terms below 10^7 are 3, 5, 17, 257 and 65537.
Numbers k such that phi(k) = 2^(2^m) where 2^(2^m)+1 is a Fermat prime (A019434). a(42) >= 2^(2^33) + 1, if a 6th Fermat prime exists. - Amiram Eldar, Dec 14 2024

Crossrefs

Programs

  • PARI
    u(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d));
    for(n=1,10^5,if(isprime(u(eulerphi(n))),print1(n,", "))); \\ Joerg Arndt, Sep 17 2023

Extensions

Deleted incorrect MMA program. - N. J. A. Sloane, Sep 17 2023

A270416 Numbers n such that sigma(n) - 1 and sigma(phi(n)) are both primes.

Original entry on oeis.org

3, 5, 6, 10, 17, 34, 40, 60, 85, 136, 204, 240, 4369, 8224, 8704, 8738, 10880, 12336, 13056, 65537, 131074, 131584, 139264, 163840, 164480, 174760, 208896, 245760, 262140, 524296, 526336, 559232, 835584, 838848, 2281736192, 2694881440, 2852170240, 2863267840, 3221274624, 3233857728, 4026593280
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Numbers n such that A039653(n) and A062402(n) are both primes.
Intersection of A248792 and A062514.
Prime terms are in A249759.
Corresponding values of sigma(n) - 1: 3, 5, 11, 17, 17, 53, 89, 167, ...
Corresponding values of sigma(phi(n)): 3, 7, 3, 7, 31, 31, 31, 31, 127, ...

Examples

			10 is in the sequence because sigma(10) - 1 = 18 - 1 = 17 and sigma(phi(10)) = sigma(4) = 7 (both primes).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[PrimeQ[DivisorSigma[1, #] - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n)-1) && isprime(sigma(eulerphi(n))); \\ Michel Marcus, Mar 17 2016

Extensions

a(35)-a(41) from Giovanni Resta, Apr 10 2016

A281627 a(n) is the smallest number k such that sigma(phi(k)) = A062402(k) is the n-th Mersenne prime (A000668(n)), or 0 if no such k exists.

Original entry on oeis.org

3, 5, 17, 85, 4369, 65537, 327685, 1431655765, 2305843009213693952, 618970019642690137449562112, 162259276829213363391578010288128, 170141183460469231731687303715884105728
Offset: 1

Views

Author

Jaroslav Krizek, Feb 11 2017

Keywords

Comments

Conjecture 1: If A062402(n) = A000203(A000010(n)) = sigma(phi(n)) is a prime p for some n, then p is Mersenne prime (A000668); a(n) > 0 for all n.
Conjecture 2: a(n) = the smallest number k such that phi(k) has exactly A000043(n)-1 divisors; see A276044.
Conjecture 3: a(n) = the smallest number k such that phi(k) has exactly A000043(n)-1 prime factors (counted with multiplicity); see A275969.
a(n) <= A000668(n) for n = 1-18; conjecture: a(n) <= A000668(n) for all n.
Equals A002181 (index in A002202 of (intersection of A023194 and A002202)). - Michel Marcus, Feb 12 2017

Crossrefs

Cf. A053576 (includes the first 13 known terms of this sequence).

Programs

  • Magma
    A281627:=func; Set(Sort([A281627(n): n in [SumOfDivisors(EulerPhi(n)): n in[1..1000000] | IsPrime(SumOfDivisors(EulerPhi(n)))]]));
    
  • PARI
    terms() = {v = readvec("b023194.txt"); for(i=1, #v, if (istotient(v[i], &n), print1(n/2, ", ")););} \\ Michel Marcus, Feb 12 2017
    
  • PARI
    f(p) = {my(s = invsigma(p), t, minv = 0); for(i = 1 ,#s, t = invphi(s[i]); for(j = 1, #t, if(minv == 0, minv = t[j]); if(t[j] < minv, minv = t[j]))); minv;} \\ using Max Alekseyev's invphi.gp
    list(pmax) = forprime(p = 1, pmax, if(isprime(2^p-1), print1(f(2^p-1), ", "))); \\ Amiram Eldar, Dec 23 2024

Extensions

a(8) from Michel Marcus, Feb 12 2017
a(9)-a(12) from Amiram Eldar, Dec 23 2024

A300217 Numbers k such that tau(phi(k)) is a prime.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 17, 32, 34, 40, 48, 60, 85, 128, 136, 160, 170, 192, 204, 240, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Feb 28 2018

Keywords

Comments

Numbers k such that A062821(k) = A000005(A000010(k)) is a prime.
Supersequence of A062514.
From Robert Israel, Mar 18 2018: (Start)
Numbers k such that A000010(k) = 2^(p-1) where p is prime.
Numbers of the form 2^m*Product_{i=1..k} (2^(2^(e_i))+1) where 2^(2^(e_i)+1) are distinct Fermat primes (A019434) and m + 1 + Sum_i 2^(e_i) is prime. In particular the prime terms are A249759.
(End)
According to a comment in A009087, if the sum of divisors is prime, then the number of divisors is also prime. - Michael B. Porter, Mar 23 2018

Examples

			17 is a term because phi(17) = 16, tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10^6] | IsPrime(NumberOfDivisors(EulerPhi(n)))];
    
  • Maple
    select(isprime @ numtheory:-tau @ numtheory:-phi, [$1..10^5]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[Range[2^16 + 1], PrimeQ@ DivisorSigma[0, EulerPhi@ #] &] (* Michael De Vlieger, Mar 01 2018 *)
  • PARI
    isok(k) = isprime(numdiv(eulerphi(k))); \\ Altug Alkan, Mar 04 2018
Showing 1-6 of 6 results.