cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A056830 Alternate digits 1 and 0.

Original entry on oeis.org

0, 1, 10, 101, 1010, 10101, 101010, 1010101, 10101010, 101010101, 1010101010, 10101010101, 101010101010, 1010101010101, 10101010101010, 101010101010101, 1010101010101010, 10101010101010101, 101010101010101010
Offset: 0

Views

Author

Henry Bottomley, Aug 30 2000

Keywords

Comments

Fibonacci bit-representations of numbers for which there is only one possible representation and for which the maximal and minimal bit-representations (A104326 and A014417) are equal. The numbers represented are equal to the numbers in A000071 (subtract the first term of that sequence). For example, 10101 = 12 because 8+5+1. - Casey Mongoven, Mar 19 2006
Sequence A000975 written in base 2. - Jaroslav Krizek, Aug 05 2009
The absolute value of alternating sum of the first n repunits: a(n) = abs(Sum_{k=0..n} (-1)^k*A002275(n)). - Ilya Gutkovskiy, Dec 02 2015
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016

Examples

			n  a(n)             A000975(n)   (If a(n) is interpreted in base 2.)
------------------------------
0  0 ....................... 0
1  1 ....................... 1
2  10 ...................... 2 = 2^1
3  101 ..................... 5
4  1010 ................... 10 = 2^1 + 2^3
5  10101 .................. 21
6  101010 ................. 42 = 2^1 + 2^3 + 2^5
7  1010101 ................ 85
8  10101010 .............. 170 = 2^1 + 2^3 + 2^5 + 2^7
9  101010101 ............. 341
10 1010101010 ............ 682 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9
11 10101010101 .......... 1365
12 101010101010 ......... 2730 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9 + 2^11, etc.
- _Bruno Berselli_, Dec 02 2015
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Int(10^(n+1)/99) ); # G. C. Greubel, Jul 14 2019
  • Magma
    [Round((20*10^n-11)/198) : n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A056830 := proc(n) floor(10^(n+1)/99) ; end proc:
  • Mathematica
    CoefficientList[Series[x/((1-x^2)*(1-10*x)), {x,0,30}], x] (* G. C. Greubel, Sep 26 2017 *)
  • PARI
    Vec(x/((1-x)*(1+x)*(1-10*x))+O(x^30)) \\ Charles R Greathouse IV, Feb 13 2017
    
  • Sage
    [floor(10^(n+1)/99) for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = +10*a(n-1) + a(n-2) - 10*a(n-3).
a(n) = floor(10^(n+1)/(10^2-1)) = a(n-2)+10^(n-1) = 10*a(n-1) + (1 - (-1)^n)/2.
From Paul Barry, Nov 12 2003: (Start)
a(n+1) = Sum_{k=0..floor(n/2)} 10^(n-2*k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*10^j.
G.f.: x/((1-x)*(1+x)*(1-10*x)).
a(n) = 9*a(n-1) + 10*a(n-2) + 1.
a(n) = 10^(n+1)/99 - (-1)^n/22 - 1/18. (End)
a(n) = A007088(A107909(A104161(n))) = A007088(A000975(n)). - Reinhard Zumkeller, May 28 2005
a(n) = round((20*10^n-11)/198) = floor((10*10^n-1)/99) = ceiling((10*10^n-10)/99) = round((10*10^n-10)/99). - Mircea Merca, Dec 27 2010
From Daniel Forgues, Sep 20 2018: (Start)
If a(n) is interpreted in base 2:
a(2n) = Sum_{k=1..n} 2^(2n-1), n >= 0; a(2n-1) = a(2n)/2, n >= 1.
a(2n) = A020988(n), n >= 0.
a(0) = 0; a(2n) = 4*a(2n-2) + 2, n >= 1. (End)

Extensions

More terms from Casey Mongoven, Mar 19 2006

A062923 Numbers k that, when expressed in base 4 and then interpreted in base 8, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 12, 16, 30, 32, 48, 64, 120, 128, 166, 192, 256, 278, 480, 512, 664, 765, 768, 1024, 1112, 1390, 1682, 1803, 1920, 2048, 2426, 2656, 3060, 3072, 4096, 4365, 4448, 5446, 5560, 6728, 7212, 7441, 7680, 8192, 9704, 9945, 10624, 12240, 12288, 16384, 17460
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			8 in base 4 is 20, which interpreted in base 8 is 16 = 2*8.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[18000],Mod[FromDigits[IntegerDigits[#,4],8],#]==0&]] (* Harvey P. Dale, Feb 10 2024 *)

Extensions

Offset changed to 1 and more terms from Georg Fischer, Mar 13 2023

A062925 Numbers k that, when expressed in base 4 and then interpreted in base 9, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 15, 25, 75, 100, 125, 355, 435, 500, 1775, 2415, 3675, 5825, 9660, 14700, 17074, 20786, 22382, 23300, 27300, 79716, 83144, 87087, 97860, 103930, 125460, 172105, 331275, 332576, 348348, 415720, 1325100, 1330304, 1531980
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			5 in base 4 is 11, which interpreted in base 9 is 10 = 2*5.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[1540000],Divisible[FromDigits[IntegerDigits[#,4],9],#]&]] (* Harvey P. Dale, Sep 03 2021 *)
  • PARI
    select(n->n==0 || fromdigits(digits(n,4), 9) % n == 0, [0..100000]) \\ Andrew Howroyd, Jun 28 2018

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 by Georg Fischer, Mar 13 2023

A062928 Numbers k that, when expressed in base 5 and then interpreted in base 6, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 697, 704, 705, 764, 765, 1469, 1470, 1477, 1537, 2242, 2309, 2310, 2377, 3074, 3082, 590567, 591229, 595982, 2361731, 6900704, 7111031, 11808655, 34503520, 35555155, 65205900, 70204260, 70854060
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			704 in base 5 is 10304, which interpreted in base 6 is 1408 = 2*704.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[12000000],Divisible[FromDigits[ IntegerDigits[ #,5],6],#]&]] (* Harvey P. Dale, Jul 20 2014 *)

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(28)-a(32) from Georg Fischer, Mar 13 2023

A062944 Numbers k that, when expressed in base 7 and then interpreted in base 10, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 51, 102, 105, 153, 156, 207, 210, 258, 261, 312, 315, 2589, 2590, 2601, 2753, 5354, 5355, 5506, 8108, 8259, 8260, 10861, 11013, 11025, 13614, 13615, 13626, 13766, 13778, 16379, 16380, 16531, 33045
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

Zero followed by A032549. [From R. J. Mathar, Oct 02 2008]
There are only 47 terms up to 10 million, the largest of which is 7581525. - Harvey P. Dale, Jul 09 2016

Examples

			51 in base 7 is 102, which interpreted in base 10 is 102=2*51
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[35000],Divisible[FromDigits[IntegerDigits[ #,7]], #]&]] (* Harvey P. Dale, Jul 09 2016 *)

Extensions

Offset changed to 1 by Georg Fischer, Mar 13 2023

A062929 Numbers k that, when expressed in base 5 and then interpreted in base 7, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 3640, 7863, 7894, 8186, 11830, 18200, 39315, 39470, 40930, 59150, 2521602, 3278326, 4167678, 13196470, 17870857, 17992485, 20838390, 36724952, 58516102, 73231902, 89354285, 89962425, 105564531, 200046408, 301764432, 446771425, 449812125, 633387186
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			3640 in base 5 is 104030, which interpreted in base 7 is 18200=5*3640.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,20*10^6],Divisible[FromDigits[IntegerDigits[#,5],7],#]&] (* Harvey P. Dale, Jul 18 2015 *)

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(22)-a(33) from Georg Fischer, Mar 13 2023

A062930 Numbers k that, when expressed in base 5 and then interpreted in base 8, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 129, 130, 259, 260, 389, 390, 400, 519, 520, 529, 530, 720, 774, 780, 1560, 2340, 2394, 2400, 3120, 3354, 3380, 4680, 6734, 6760, 7017, 9360, 10397, 10400, 10657, 14037, 16770, 16900, 18720, 20280, 24654, 33670, 33800, 35085, 40560, 51985, 52000
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			129 in base 5 is 1004, which interpreted in base 8 is 516 = 4*129.
		

Crossrefs

Extensions

Offset changed to 1 by Georg Fischer, Mar 13 2023

A062931 Numbers k that, when expressed in base 5 and then interpreted in base 9, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 28, 30, 58, 60, 88, 90, 118, 120, 168, 179, 180, 348, 359, 360, 840, 895, 900, 1740, 1795, 1800, 5370, 5400, 11726, 11984, 16200, 21142, 26850, 27000, 38340, 57574, 137128, 183960, 214207, 293628, 421560, 750288, 866700, 1043027, 1304280, 1468140
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			28 in base 5 is 103, which interpreted in base 9 is 84 = 3*28.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[11*10^5],Divisible[FromDigits[ IntegerDigits[ #,5],9],#]&]] (* Harvey P. Dale, Apr 27 2015 *)

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 by Georg Fischer, Mar 13 2023

A062934 Numbers k that, when expressed in base 6 and then interpreted in base 7, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 14027, 14028, 14103, 14112, 14867, 14876, 14951, 14952, 10099698, 10099846, 20210795, 30310661, 30311795, 50522741, 723825175, 142569349356, 482364801576, 486288289536, 972577541899, 1945641402768, 2474129673299
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

1.6 * 10^13 < a(28) <= 24335728984305. - Delbert L. Johnson, May 16 2024

Examples

			14027 in base 6 is 144535, which interpreted in base 7 is 28054 = 2*14027.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(17)-a(20) from Georg Fischer, Mar 13 2023
a(21)-a(27) from Delbert L. Johnson, May 16 2024

A062937 Numbers k that, when expressed in base 6 and then interpreted in base 8, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1459, 1564, 3023, 3129, 3139, 3244, 4703, 4704, 4809, 6383, 6384, 8754, 9384, 18138, 18774, 18834, 19464, 28218, 28224, 28854, 38298, 38304, 79802, 326236, 2463293, 2628864, 14779758, 15773184, 22011172, 88678548, 94639104, 209918592
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			1459 in base 6 is 10431, which interpreted in base 8 is 4377=3*1459.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[21*10^7],Mod[FromDigits[IntegerDigits[#,6],8],#]==0&]] (* Harvey P. Dale, Apr 21 2024 *)

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(33)-a(38) from Georg Fischer, Mar 13 2023
Showing 1-10 of 14 results. Next