cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A266341 If A036987(n) = 1, a(n) = n - A053644(n), otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 12, 13, 14, 15, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 24, 25, 26, 27, 28, 29, 30, 31, 28, 29, 30, 31, 30, 31, 31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2016

Keywords

Comments

Informally: In binary representation of n, move the most significant 1-bit to the position of the most significant 0-bit ("the leftmost free hole"), and remove it altogether if there are no such holes, i.e., if n is one of the terms of A000225. When the subsets of nonnegative integers are associated with the binary expansion of n in the usual way (bit-k is 1 if number k is present in the set, and 0 stands for an empty set) then a(n) corresponds to the set obtained by "squashing" the set which corresponds to n. See Kubo & Vakil paper, page 240, 8.1 Compression revisited.

Examples

			For n=13, "1101" in binary, we remove the most significant bit to get "101", where the most significant nonleading 0 is then filled with that 1, to get "111", which is 7's binary representation, thus a(13) = 7.
For n=15, "1111" in binary, we remove the most significant bit to get "111" (= 7), and as there is no most significant nonleading 0 present, the result is just that, and a(15) = 7.
For n=21, "10101" in binary, removing the most significant bit and moving it to the position of next zero results "1101", thus a(21) = 13.
		

Crossrefs

Programs

  • PARI
    a(n) = my(s=bitnegimply(n>>1,n)); n - if(n,1<Kevin Ryde, Jun 15 2023
  • Python
    from sympy import catalan
    def a063250(n):
        if n<2: return 0
        b=bin(n)[2:]
        s=0
        while b.count("0")!=0:
            N=int(b[-1] + b[:-1], 2)
            s+=1
            b=bin(N)[2:]
        return s
    def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
    def a036987(n): return catalan(n)%2
    def a(n): return n - a053644(n) if a036987(n)==1 else n - a053644(n) + 2**(a063250(n) - 1) # Indranil Ghosh, May 25 2017
    

Formula

a(0) = 0; after which, for n = 2^k - 1 (when k >= 1) a(n) = 2^(k-1) - 1, otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).
Equally: if A063250(n) = 0, a(n) = n - A053644(n), otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).
Other identities. For all n >= 0:
a(n) = A209862(-1+A004001(1+A209861(n))). [Not yet proved that the required permutations are just A209861 & A209862, although this has been checked empirically up to n=32769. See also Kubo & Vakil paper.]

A048881 a(n) = A000120(n+1) - 1 = wt(n+1) - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Highest power of 2 dividing n-th Catalan number (A000108).
a(n) = 0 iff n = 2^k - 1, k=0,1,...
Appears to be number of binary left-rotations (iterations of A006257) to reach fixed point of form 2^k-1. Right-rotation analog is A063250. This would imply that for n >= 0, a(n)=f(n), recursively defined to be 0 for n=0, otherwise as f( ( (1-n)(1-p)(1-s) - (1-n-p-s) ) / 2) + p (s+1) / 2, where p = n mod 2 and s = - signum(n) (f(n<0) is A000120(-n)). - Marc LeBrun, Jul 11 2001
Let f(0) = 01, f(1) = 12, f(2) = 23, f(3) = 34, f(4) = 45, etc. Sequence gives concatenation of 0, f(0), f(f(0)), f(f(f(0))), ... Also f(f(...f(0)...)) converges to A000120. - Philippe Deléham, Aug 14 2003
C(n, k) is the number of occurrence of k in the n-th group of terms in this sequence read by rows: {0}; {0, 1}; {0, 1, 1, 2}; {0, 1, 1, 2, 1, 2, 2, 3}; {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; ... - Philippe Deléham, Jan 01 2004
Highest power of 2 dividing binomial(n,floor(n/2)). - Benoit Cloitre, Oct 20 2003
2^a(n) are numerators in the Maclaurin series for (sin x)^2. - Jacob A. Siehler, Nov 11 2009
Conjecture: a(n) is the sum of digits of the n-th word in A076478, for n >= 1; has been confirmed for n up to 20000. - Clark Kimberling, Jul 14 2021

Examples

			From _Omar E. Pol_, Mar 08 2011: (Start)
Sequence can be written in the following form (irregular triangle):
  0,
  0,1,
  0,1,1,2,
  0,1,1,2,1,2,2,3,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,
  0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
  ...
Row sums are A001787.
(End)
		

Crossrefs

First differences of A078903.

Programs

  • Haskell
    a048881 n = a048881_list !! n
    a048881_list = c [0] where c (x:xs) = x : c (xs ++ [x,x+1])
    -- Reinhard Zumkeller, Mar 07 2011
    (Python 3.10+)
    def A048881(n): return (n+1).bit_count()-1 # Chai Wah Wu, Nov 15 2022
  • Maple
    A048881 := proc(n)
        A000120(n+1)-1 ;
    end proc:
    seq(A048881(n),n=0..200) ; # R. J. Mathar, Mar 12 2018
  • Mathematica
    a[n_] := IntegerExponent[ CatalanNumber[n], 2]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    { a(n) = if( n<0, 0, n++; n /= 2^valuation(n,2); subst( Pol( binary( n ) ), x, 1) - 1 ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, valuation( (2*n)! / n! / (n+1)!, 2 ) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = hammingweight(n+1) - 1; \\ Michel Marcus, Nov 15 2022
    

Formula

Writing n as 2^m+k with -1 <= k < 2^m-1, then a(n) = A000120(k+1). - Henry Bottomley, Mar 28 2000
a(n) = k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
a(2*n) = a(n-1)+1, a(2*n+1) = a(n). - Vladeta Jovovic, Oct 10 2002
G.f.: (1/(x-x^2)) * (x^2/(1-x) - Sum_{k>=1} x^(2^k)/(1-x^(2^k))). - Ralf Stephan, Apr 13 2002
a(n) = A000120(A129760(n+1)). - Reinhard Zumkeller, Jun 30 2010
a(n+k) = A240857(n,k), 0 <= k <= n; in particular: a(n) = A240857(n,0). - Reinhard Zumkeller, Apr 14 2014
a(n) = (n+1)*2 - A101925(n+1). - Gleb Ivanov, Jan 12 2022

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2009

A329369 Number of permutations of {1,2,...,m} with excedance set constructed by taking m-i (0 < i < m) if b(i-1) = 1 where b(k)b(k-1)...b(1)b(0) (0 <= k < m-1) is the binary expansion of n.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 17, 3, 31, 7, 15, 1, 31, 15, 37, 7, 69, 17, 37, 3, 115, 31, 69, 7, 115, 15, 31, 1, 63, 31, 77, 15, 145, 37, 81, 7, 245, 69, 155, 17, 261, 37, 77, 3, 391, 115, 261, 31, 445, 69, 145, 7, 675, 115, 245, 15, 391, 31, 63, 1, 127, 63
Offset: 0

Views

Author

Mikhail Kurkov, Nov 12 2019

Keywords

Comments

Another version of A152884.
The excedance set of a permutation p of {1,2,...,m} is the set of indices i such that p(i) > i; it is a subset of {1,2,...,m-1}.
Great work on this subject was done by R. Ehrenborg and E. Steingrimsson, so most of the formulas given below are just their results translated into the language of the sequences which are related to the binary expansion of n.
Conjecture 1: equivalently, number of open tours by a biased rook on a specific f(n) X 1 board, which ends on a white cell, where f(n) = A070941(n) = floor(log_2(2n)) + 1 and cells are colored white or black according to the binary representation of 2n. A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right. - Mikhail Kurkov, May 18 2021
Conjecture 2: this sequence is an inverse modulo 2 binomial transform of A284005. - Mikhail Kurkov, Dec 15 2021

Examples

			a(1) = 1 because the 1st excedance set is {m-1} and the permutations of {1,2,...,m} with such excedance set are 21, 132, 1243, 12354 and so on, i.e., for a given m we always have 1 permutation.
a(2) = 3 because the 2nd excedance set is {m-2} and the permutations of {1,2,...,m} with such excedance set are 213, 312, 321, 1324, 1423, 1432, 12435, 12534, 12543 and so on, i.e., for a given m we always have 3 permutations.
a(3) = 1 because the 3rd excedance set is {m-2, m-1} and the permutations of {1,2,...,m} with such excedance set are 231, 1342, 12453 and so on, i.e., for a given m we always have 1 permutation.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;  2^padic[ordp](n, 2) end:
    a:= proc(n) option remember; `if`(n=0, 1, (h-> a(h)+
         `if`(n::odd, 0, (t-> a(h-t)+a(n-t))(g(h))))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 30 2023
  • Mathematica
    a[n_] := a[n] = Which[n == 0, 1, OddQ[n], a[(n-1)/2], True, a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]] + a[n - 2^IntegerExponent[n/2, 2]]];
    a /@ Range[0, 65] (* Jean-François Alcover, Feb 13 2020 *)
  • PARI
    upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1])); v1 \\ Mikhail Kurkov, Jun 06 2024

Formula

a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) for m > 0, n >= 0 (equivalent to proposition 2.5 at the page 287, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n)) for n > 0 with a(0) = 1 where g(n) = A053645(n), h(n) = A063250(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = 2*a(n + g(n)) + a(2*g(n)) for n > 0, floor(n/3) < 2^(floor(log_2(n))-1) (in other words, for 2^m + k where 0 <= k < 2^(m-1), m > 0) with a(0) = 1 (just a special case of the previous formula, because for 2^m + k where 0 <= k < 2^(m-1), m > 0 we have 2^h(n) = n - g(n)).
a(2n) = a(f(n,-1)) + a(f(n,0)) + a(f(n,1)) for n > 0 with a(0) = 1 where f(n,k) = 2*(f(floor(n/2),k) + n mod 2) + k*A036987(n) for n > 1 with f(1,k) = abs(k) (equivalent to a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n))).
a(n) = Sum_{j=0..2^wt(n) - 1} (-1)^(wt(n) - wt(j)) Product_{k=0..wt(n) - 1} (1 + wt(floor(j/2^k)))^T(n,k) for n > 0 with a(0) = 1 where wt(n) = A000120(n), T(n,k) = T(floor(n/2), k - n mod 2) for k > 0 with T(n,0) = A001511(n) (equivalent to theorem 6.3 at page 296, see R. Ehrenborg and E. Steingrimsson link). Here T(n, k) - 1 for k > 0 is the length of the run of zeros between k-th pair of ones from the right side in the binary expansion of n. Conjecture 1: this formula is equivalent to inverse modulo 2 binomial transform of A284005.
Sum_{k=0..2^n-1} a(k) = (n+1)! for n >= 0.
a((4^n-1)/3) = A110501(n+1) for n >= 0.
a(2^2*(2^n-1)) = A091344(n+1),
a(2^3*(2^n-1)) = A091347(n+1),
a(2^4*(2^n-1)) = A091348(n+1).
More generally, a(2^m*(2^n-1)) = a(2^n*(2^m-1)) = S(n+1,m) for n >= 0, m >= 0 where S(n,m) = Sum_{k=1..n} k!*k^m*Stirling2(n,k)*(-1)^(n-k) (equivalent to proposition 6.5 at the page 297, see R. Ehrenborg and E. Steingrimsson link).
Conjecture 2: a(n) = (1 + A023416(n))*a(g(n)) + Sum_{k=0..floor(log_2(n))-1} (1-R(n,k))*a(g(n) + 2^k*(1 - R(n,k))) for n > 1 with a(0) = 1, a(1) = 1, where g(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2 (at this moment this is the only formula here, which is not related to R. Ehrenborg's and E. Steingrimsson's work and arises from another definition given above, exactly conjectured definition with a biased rook). Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jun 23 2021
From Mikhail Kurkov, Jan 23 2023: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 3: a(n) = A357990(n, 1) for n >= 0.
Conjecture 4: a(2^m*(2k+1)) = Sum_{i=1..wt(k) + 2} i!*i^m*A358612(k, i)*(-1)^(wt(k) - i) for m >= 0, k >= 0 where wt(n) = A000120(n).
Conjecture 5: a(2^m*(2^n - 2^p - 1)) = Sum_{i=1..n} i!*i^m*(-1)^(n - i)*((i - p + 1)*Stirling2(n, i) - Stirling2(n - p, i - p) + Sum_{j=0..p-2} (p - j - 1)*Stirling2(n - p, i - j)/j! Sum_{k=0..j} (i - k)^p*binomial(j, k)*(-1)^k) for n > 2, m >= 0, 0 < p < n - 1. Here we consider that Stirling2(n, k) = 0 for n >= 0, k < 0. (End)
Conjecture 6: a(2^m*n + q) = Sum_{i=A001511(n+1)..A000120(n)+1} A373183(n, i)*a(2^m*(2^(i-1)-1) + q) for n >= 0, m >= 0, q >= 0. Note that this formula is recursive for n != 2^k - 1. Also, it is not related to R. Ehrenborg's and E. Steingrimsson's work. - Mikhail Kurkov, Jun 05 2024
From Mikhail Kurkov, Jul 10 2024: (Start)
a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*(-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) for m >= 0, n >= 0, k >= 0 with a(0) = 1.
Proof: start with a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) given above and rewrite it as a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) a(2^i*(2^(n-1)*(2k+1) - 1)).
Then conjecture that a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*f(n, m, i). From that it is obvious that f(0, m, i) = [i = (m+1)].
After that use a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) Sum_{j=1..i+1} a(2^j*k)*f(n-1, i, j) = Sum_{i=1..m+1} a(2^i*k) Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i). From that it is obvious that f(n, m, i) = Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i).
Finally, all we need is to show that basic conditions and recurrence for f(n, m, i) gives f(n, m, i) = (-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) (see Max Alekseyev link).
a(2^m*(2k+1)) = a(2^(m-1)*k) + (m+1)*a(2^m*k) + Sum_{i=1..m-1} a(2^m*k + 2^i) for m > 0, k >= 0.
Proof: start with a(2^(m+1)*(2k+1)) = a(2^m*k) + (m+2)*a(2^(m+1)*k) + Sum_{i=1..m} a(2^(m+1)*k + 2^i).
Then use a(2^m*(4k+1)) = a(2^m*k) + (m+1)*a(2^(m+1)*k) + Sum_{i=1..m-1} a(2^(m+1)*k + 2^i).
From that we get a(2^(m+1)*(2k+1)) - a(2^m*k) - (m+2)*a(2^(m+1)*k) - a(2^(m+1)*k + 2^m) = a(2^m*(4k+1)) - a(2^m*k) - (m+1)*a(2^(m+1)*k).
Finally, a(2^(m+1)*(2k+1)) = a(2^(m+1)*k) + a(2^m*(2*k+1)) + a(2^m*(4k+1)) which agrees with the a(2^m*(2n+1)) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) given above.
This formula can be considered as an alternative to a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n). There are algorithms for both these formulas that allow you to calculate them without recursion. However, even though it is necessary to calculate binomial coefficients in the mentioned formula, the triple-looped algorithm for it still works faster (see Peter J. Taylor link).
It looks like you can also change v2 in the mentioned algorithm to vector with elements a(2^m*(2^(i+A007814(n+1)-1)-1) + q) to get a(2^m*n + q) instead of a(n). This may have common causes with formula that uses A373183 given above. (End)
From Mikhail Kurkov, Jan 27 2025: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 7: A008292(n+1,k+1) = Sum_{i=0..2^n-1} [A000120(i) = k]*a(i) for n >= 0, k >= 0.
Conjecture 8: a(2^m*(2^n*(2k+1)-1)) = Sum_{i=0..m} Sum_{j=0..m-i} Sum_{q=0..i} binomial(m-i,j)*(m-j+1)^n*a(2^(q+1)*k)*L(m,i,q)*(-1)^j for m >= 0, n > 0, k >= 0 where L(n,k,m) = W(n-m,k-m,m+1) for n > 0, 0 <= k < n, 0 <= m <= k and where W(n,k,m) = (k+m)*W(n-1,k,m) + (n-k)*W(n-1,k-1,m) + [m > 1]*W(n,k,m-1) for 0 <= k < n, m > 0 with W(0,0,m) = 1, W(n,k,m) = 0 for n < 0 or k < 0.
In particular, W(n, k, 1) = A173018(n, k), W(n, k, 2) = A062253(n, k), W(n, k, 3) = A062254(n, k) and W(n, k, 4) = A062255(n, k).
Conjecture 9: a(n) = b(n,wt(n)) for n >= 0 where b(2n+1,k) = b(n,k) + (wt(n)-k+2)*b(n,k-1), b(2n,k) = (wt(n)-k+1)*b(2n+1,k) for n > 0, k > 0 with b(n,0) = A341392(n) for n >= 0, b(0,k) = 0 for k > 0 and where wt(n) = A000120(n) (see A379817).
More generally, a(2^m*(2k+1)) = ((m+1)!)^2*b(k,wt(k)-m) - Sum_{j=1..m} Stirling1(m+2,j+1)*a(2^(j-1)*(2k+1)) for m >= 0, k >= 0. Here we also consider that b(n,k) = 0 for k < 0. (End)
Conjecture 10: if we change b(n,0) = A341392(n) given above to b(n,0) = A341392(n)*x^n, then nonzero terms of the resulting polynomials for b(n,wt(n)) form c(n,k) such that a(n) = Sum_{k=0..A080791(n)} c(n,k) for n >= 0 where c(n,k) = (Product_{i=0..k-1} (1 + 1/A000120(floor(n/2^(A000523(n)-i))))) * Sum_{j=max{0,k-A080791(n)+A080791(A053645(n))}..A080791(A053645(n))} c(A053645(n),j) for n > 0, k >= 0 with c(0,0) = 1, c(0,k) = 0 for k > 0. - Mikhail Kurkov, Jun 19 2025

A339662 Greatest gap in the partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 2, 4, 0, 5, 3, 1, 0, 6, 0, 7, 2, 3, 4, 8, 0, 2, 5, 1, 3, 9, 0, 10, 0, 4, 6, 2, 0, 11, 7, 5, 2, 12, 3, 13, 4, 1, 8, 14, 0, 3, 2, 6, 5, 15, 0, 4, 3, 7, 9, 16, 0, 17, 10, 3, 0, 5, 4, 18, 6, 8, 2, 19, 0, 20, 11, 1, 7, 3, 5, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the index of the greatest prime, up to the greatest prime index of n, not dividing n. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Positions of first appearances are A000040.
Positions of 0's are A055932.
The version for positions of 1's in reversed binary expansion is A063250.
The prime itself (not just the index) is A079068.
The version for crank is A257989.
The minimal instead of maximal version is A257993.
The version for greatest difference is A286469 or A286470.
Positive integers by Heinz weight and image are counted by A339737.
Positions of 1's are A339886.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[maxgap[primeMS[n]],{n,100}]

Formula

a(n) = A000720(A079068(n)).

A365920 Greatest non-subset-sum of the prime indices of n, or 0 if there is none.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 3, 2, 4, 0, 5, 3, 4, 0, 6, 0, 7, 0, 5, 4, 8, 0, 5, 5, 5, 3, 9, 0, 10, 0, 6, 6, 6, 0, 11, 7, 7, 0, 12, 0, 13, 4, 6, 8, 14, 0, 7, 5, 8, 5, 15, 0, 7, 0, 9, 9, 16, 0, 17, 10, 7, 0, 8, 4, 18, 6, 10, 6, 19, 0, 20, 11, 7, 7, 8, 5, 21, 0, 7, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Comments

This is the greatest element of {0,...,A056239(n)} that is not equal to A056239(d) for any divisor d|n, d>1. This definition is analogous to the Frobenius number of a numerical semigroup (see link), but it looks only at submultisets of a finite multiset, not all multisets of elements of a set.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 156 are {1,1,2,6}, with subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, so a(156) = 5.
		

Crossrefs

For binary indices instead of sums we have A063250.
Positions of first appearances > 2 are A065091.
Zeros are A325781, nonzeros A325798.
For prime indices instead of sums we have A339662, minimum A257993.
For least instead of greatest non-subset-sum we have A366128.
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Max@@Prepend[nmz[prix[n]],0],{n,100}]

A339737 Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   0   1   0
   2   1   1   1   0
   3   1   1   1   1   0
   4   1   2   2   1   1   0
   5   1   3   2   2   1   1   0
   6   2   3   4   3   2   1   1   0
   8   2   4   5   4   3   2   1   1   0
  10   2   5   7   6   5   3   2   1   1   0
  12   3   6   8   9   6   5   3   2   1   1   0
  15   3   8  11  11  10   7   5   3   2   1   1   0
  18   4   9  13  15  13  10   7   5   3   2   1   1   0
  22   5  10  17  19  18  14  11   7   5   3   2   1   1   0
  27   5  13  20  24  23  20  14  11   7   5   3   2   1   1   0
For example, row n = 9 counts the following partitions:
  (3321)       (432)   (333)      (54)      (522)    (63)    (72)   (81)  (9)
  (22221)      (3222)  (4311)     (441)     (531)    (621)   (711)
  (32211)              (33111)    (4221)    (5211)   (6111)
  (222111)             (3111111)  (42111)   (51111)
  (321111)                        (411111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
The version for least gap is A264401, with Heinz number encoding A257993.
The version for greatest difference is A286469 or A286470.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A056239 adds up prime indices, row sums of A112798.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
A238709/A238710 counts partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[Length[Select[IntegerPartitions[n],maxgap[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    S(n,k)={if(k>n, O(x*x^n), x^k*(S(n-k,k+1) + 1)/(1 - x^k))}
    ColGf(k,n) = {(k==0) + S(n,k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1,n-k)))}
    A(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(M=A(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Jan 13 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 13 2024

A087734 a(n) = f(f(n)), where f() = A035327().

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Offset: 0

Views

Author

N. J. A. Sloane, Oct 01 2003

Keywords

Programs

  • Maple
    a:= n-> ((i->Bits[Nand](i$2))@@2)(n):
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 29 2019
  • Mathematica
    {0}~Join~Array[Nest[BitXor[#, 2^IntegerPart[Log2@ # + 1] - 1] &, #, 2] /. -1 -> 0 &, 81] (* Michael De Vlieger, Sep 29 2019 *)

Formula

From Mikhail Kurkov, Sep 29 2019: (Start)
Some conjectures:
a(n) = n - Sum_{k=A063250(n)..A000523(n)} 2^k = n - 2^(A000523(n)+1) + 2^A063250(n) for n>0 with a(0)=0.
G.f.: 1/(1-x) * Sum_{j>=0} (2^j)*((x^(2^j))/(1+x^(2^j)) - (1-x^(2^j)) * Sum_{k>=1} x^((2^j)*(2^k-1))).
a(n) = 2*a(floor(n/2)) + n mod 2 - A036987(n) for n>1 with a(0)=a(1)=0.
a(n) = (1 - A036987(n-1))*(1 + A063250(n) - A063250(n-1))*(1 + a(n-1)) for n>0 with a(0)=0. (End)

A381852 In the binary expansion of n (without leading zeros): complement the bits strictly to the right of the leftmost zero digit, if any.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 8, 13, 12, 14, 15, 23, 22, 21, 20, 19, 18, 17, 16, 27, 26, 25, 24, 29, 28, 30, 31, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 55, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 61, 60, 62, 63, 95, 94, 93, 92
Offset: 0

Views

Author

Rémy Sigrist, Mar 08 2025

Keywords

Comments

This sequence is a self-inverse permutation of the nonnegative integers.
This sequence has similarities with A054429 (where we complement the bits to the right of the leftmost one digit).

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     2      10         10
   3     3      11         11
   4     5     100        101
   5     4     101        100
   6     6     110        110
   7     7     111        111
   8    11    1000       1011
   9    10    1001       1010
  10     9    1010       1001
  11     8    1011       1000
  12    13    1100       1101
  13    12    1101       1100
  14    14    1110       1110
  15    15    1111       1111
  16    23   10000      10111
		

Crossrefs

Programs

  • PARI
    a(n) = { my (b = binary(n)); for (i = 1, #b, if (b[i]==0, for (j = i+1, #b, b[j] = 1-b[j];); return (fromdigits(b, 2)););); return (n); }
    
  • Python
    def a(n):
        b = bin(n)[2:]
        zi = b.find('0')
        return n if zi == -1 else int(b[:zi+1]+"".join('0' if bi == '1' else '1' for bi in b[zi+1:]), 2)
    print([a(n) for n in range(70)]) # Michael S. Branicky, Mar 09 2025
    
  • Python
    def A381852(n): return n^((1<Chai Wah Wu, Mar 09 2025

Formula

a(n) = n iff n = 0 or n belongs to A075427.
a(n) = XOR(n,2^(A063250(n)-1)-1) if n>0 and A063250(n)>0. Otherwise a(n) = n. - Chai Wah Wu, Mar 09 2025

A063251 Least number of binary rotations needed to reach fixed point (with either left or right rotation allowed at each iteration).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 4, 2, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3
Offset: 0

Views

Author

Marc LeBrun, Jul 11 2001

Keywords

Comments

Fixed points are of the form 2^k-1. Left rotation is A006257, right rotation is A038572. Only-left order is A048881, only-right order is A063250. n for which mixed L/R order beats min of only-left, only-right is A063252.

Examples

			a(22)=2 with 22 right-> 11 left-> 7. (only-left requires 3, only-right requires 4)
		

Crossrefs

A063252 Numbers for which a mixed L/R binary rotation sequence will reach a fixed point sooner than either a pure only-left or only-right iteration.

Original entry on oeis.org

22, 38, 46, 54, 70, 78, 86, 92, 94, 102, 110, 134, 142, 150, 156, 158, 166, 174, 182, 188, 189, 190, 198, 206, 214, 220, 222, 230, 238, 262, 270, 278, 284, 286, 294, 302, 310, 316, 317, 318, 326, 334, 342, 348, 350, 358, 366, 374, 376, 378, 380, 381, 382
Offset: 1

Views

Author

Marc LeBrun, Jul 11 2001

Keywords

Comments

See A063251 for more.

Examples

			a(1)=22 because n=22 is the first n where A063251(n) that is less than both A048881(n) and A063250(n). Similarly, 189 appears because A048881(189)=5 and A063250(189)=7, but A063251(189) is just 4.
		

Crossrefs

Showing 1-10 of 13 results. Next