cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A063668 Numbers of the form 12*k + 2 with nonempty inverse totient set.

Original entry on oeis.org

2, 110, 506, 2162, 3422, 4970, 6806, 11342, 13310, 17030, 27722, 31862, 36290, 51302, 56882, 62750, 68906, 96410, 120062, 128522, 146306, 175142, 185330, 195806, 217622, 228962, 240590, 252506, 267674, 316406, 343982, 358202, 417962, 433622, 465806, 516242
Offset: 1

Views

Author

Labos Elemer, Aug 22 2001

Keywords

Comments

Except for the first term, each of these sets contains 2 terms. Other numbers of the form 12*k + 2 have empty inverse totient sets.
From Jianing Song, Dec 30 2018: (Start)
Except for the first term, these are numbers of the form (p - 1)*p^(2*e-1) = phi(p^(2*e)) where p is a prime congruent to 11 modulo 12. The inverse totient set for a(n) (n > 1) is {p^(2*e), 2*p^(2*e)}.
Numbers k such that A063667((k-2)/12) != 0.
The number of terms <= N is roughly (1/8)*sqrt(N)/log(N). (End)

Examples

			1407782 = 1186*1187 where 1187 is a prime congruent to 11 modulo 12, so 1407782 is a term, with invphi(1407782) = {1408969, 2817938} = {1187^2, 2*1187^2}.
267674 = 22*23^3 where 23 is a prime congruent to 11 modulo 12, so 267674 is a term, with invphi(267674) = {279841, 559682} = {23^4, 2*23^4}. - _Jianing Song_, Dec 30 2018
		

Crossrefs

Programs

  • PARI
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1)
    isok(n) = my(p=A006530(n), e=if(n>1, valuation(n,p), 1)); (n==2) || (p%12==11&&e%2&&n==(p-1)*p^e) \\ Jianing Song, Dec 30 2018
    
  • PARI
    isok(n) = #invphi(n) && !((n-2) % 12); \\ Michel Marcus, Dec 30 2018; using the invphi script by Max Alekseyev
    
  • PARI
    isok(m) = !((m-2) % 12) && istotient(m); \\ Michel Marcus, Apr 20 2023

Extensions

Three missing terms added by Jianing Song, Dec 30 2018

A071624 Numbers k such that phi(m) = 96*k+2 has no solution.

Original entry on oeis.org

0, 378, 1524, 2385, 7749, 13788, 21555, 34599, 46398, 50715, 59925, 69903, 75180, 86310, 104445, 117495, 177375, 230349, 239850, 269505, 290235, 311733, 380835, 393024, 470190, 497448, 525474, 583830, 598899, 743160, 760149, 812268, 902973, 998478, 1018155
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Crossrefs

Programs

  • Maple
    [seq(nops(invphi(2+96*i)),i=1..25000)];
  • Mathematica
    s=0; m=96; r=2; Do[s=EulerPhi[n]; If[Equal[Mod[s, m], r], Print[(s-r)/m]], {n, 1, 100000000}]

Extensions

a(20)-a(35) from Donovan Johnson, Jul 27 2011
Showing 1-3 of 3 results.