cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100486 a(n) = pi(n) + prime(n).

Original entry on oeis.org

2, 4, 7, 9, 14, 16, 21, 23, 27, 33, 36, 42, 47, 49, 53, 59, 66, 68, 75, 79, 81, 87, 92, 98, 106, 110, 112, 116, 119, 123, 138, 142, 148, 150, 160, 162, 169, 175, 179, 185, 192, 194, 205, 207, 211, 213, 226, 238, 242, 244, 248, 254, 257, 267, 273, 279, 285, 287
Offset: 1

Views

Author

Jonathan Vos Post, Nov 22 2004

Keywords

Examples

			a(21) = pi(21) + prime(21) = 8 + 73 = 81.
		

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(n) + NthPrime(n): n in [1..80]]; // G. C. Greubel, Apr 04 2023
    
  • Maple
    with(numtheory); A100486:=n->pi(n) + ithprime(n); seq(A100486(n), n=1..60); # Wesley Ivan Hurt, Jan 28 2014
  • Mathematica
    Table[PrimePi[n] + Prime[n], {n, 60}]
  • PARI
    a(n) = primepi(n) + prime(n); \\ Michel Marcus, Feb 24 2023
    
  • SageMath
    [prime_pi(n) + nth_prime(n) for n in range(1,81)] # G. C. Greubel, Apr 04 2023

Formula

a(n) = A000720(n) + A000040(n). - Wesley Ivan Hurt, Jan 28 2014

A100917 Primes of the form pi(n) + prime(n).

Original entry on oeis.org

2, 7, 23, 47, 53, 59, 79, 179, 211, 257, 311, 331, 373, 379, 431, 443, 487, 491, 503, 523, 647, 661, 673, 677, 683, 691, 857, 863, 887, 919, 947, 1009, 1021, 1091, 1129, 1151, 1171, 1193, 1231, 1237, 1277, 1283, 1471, 1663, 1667, 1753, 1777, 1811, 1993
Offset: 1

Views

Author

Ray Chandler, Nov 27 2004

Keywords

Comments

Primes appearing in A100486.

Crossrefs

Programs

  • Mathematica
    Select[Table[PrimePi[n] + Prime[n], {n, 300}], PrimeQ]

Formula

a(n) = A100486(A065042(n)).

A065046 Numbers k such that prime(k) - pi(k) is a prime.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 14, 15, 16, 19, 22, 30, 38, 44, 55, 64, 79, 81, 90, 91, 93, 94, 96, 101, 113, 115, 117, 118, 121, 122, 123, 124, 125, 133, 142, 148, 163, 173, 176, 178, 182, 183, 185, 189, 190, 199, 205, 206, 208, 223, 226, 232, 239, 240, 251, 253, 255, 263
Offset: 1

Views

Author

Robert G. Wilson v, Nov 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300], PrimeQ[Prime[ # ] - PrimePi[ # ]] & ]
  • PARI
    isok(m) = isprime(prime(m) - primepi(m)); \\ Harry J. Smith, Oct 04 2009

A065059 Primes p such that prime(p) + pi(p) is a prime.

Original entry on oeis.org

3, 13, 53, 71, 113, 181, 397, 463, 479, 557, 593, 647, 683, 701, 719, 743, 769, 863, 941, 983, 1069, 1091, 1109, 1181, 1193, 1231, 1277, 1291, 1307, 1451, 1733, 1811, 1931, 2347, 2393, 2411, 2473, 2531, 2551, 2593, 2887, 3041, 3221, 3251, 3347, 3361
Offset: 1

Views

Author

Robert G. Wilson v, Nov 06 2001

Keywords

Crossrefs

Cf. A065042.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[Prime[#]+PrimePi[#]]&] (* Harvey P. Dale, Oct 12 2014 *)
  • PARI
    { n=0; default(primelimit, 4294965247); for (m=1, 10^9, p=prime(m); if (isprime(prime(p) + primepi(p)), write("b065059.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 05 2009

A224872 Numbers k such that prime(k)*pi(k)+1 is prime.

Original entry on oeis.org

3, 15, 20, 29, 58, 63, 80, 90, 92, 93, 96, 116, 125, 126, 143, 151, 155, 156, 164, 182, 185, 189, 210, 230, 251, 255, 256, 268, 274, 275, 294, 298, 319, 323, 324, 325, 328, 330, 343, 360, 362, 399, 400, 416, 425, 429, 437, 446, 457, 463, 466, 480, 497, 505, 506
Offset: 1

Views

Author

K. D. Bajpai, Jul 23 2013

Keywords

Examples

			Prime(126)*pi(126)+1 = 701*30+1 = 21031 which is prime, hence 126 is in the sequence.
		

Crossrefs

Cf. A065042.

Programs

  • Maple
    A224872:=proc(n) local a; a:=(ithprime(n)*numtheory[pi](n)+1) ; if isprime(a) then RETURN(n) end if:end proc: seq(A224872(n),n=1..600);
  • Mathematica
    Select[Range[2000],PrimeQ[Prime[#]*PrimePi[#]+1]&]
  • PARI
    n=0;forprime(p=2,1e5,if(isprime(p*primepi(n++)+1), print1(n", "))) \\ Charles R Greathouse IV, Jul 23 2013
Showing 1-5 of 5 results.