A065097 a(n) = ((2n+1) + (2n-1) - 1)!/((2n+1)!*(2n-1)!).
1, 1, 7, 66, 715, 8398, 104006, 1337220, 17678835, 238819350, 3282060210, 45741281820, 644952073662, 9183676536076, 131873975875180, 1907493251046152, 27767032438524099, 406472021074865382, 5979899192930226746, 88366931393503350700, 1311063521138246054410
Offset: 0
Examples
G.f.: 1 + x + 7*x^2 + 66*x^3 + 715*x^4 + 8398*x^5 + 104006*x^6 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..834 (terms n = 1..100 from Harry J. Smith)
- D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286 [math.CO], 2008.
- Emeric Deutsch, An involution on Dyck paths and its consequences, Discrete Math., 204 (1999), no. 1-3, 163-166.
Crossrefs
Programs
-
Magma
[Binomial(4*n-1, 2*n-1)/(2*n+1): n in [1..20]]; // Vincenzo Librandi, Dec 09 2015
-
Maple
seq(binomial(4*n-1,2*n-1)/(2*n+1), n=0..30); # Robert Israel, Dec 08 2015
-
Mathematica
a[ n_] := If[ n < 1, 0, Binomial[ 4 n - 1, 2 n - 1] / (2 n + 1)]; (* Michael Somos, Oct 25 2014 *)
-
MuPAD
combinat::dyckWords::count(2*n)/2 $ n = 1..26 // Zerinvary Lajos, Apr 25 2007
-
PARI
a(n) = { if(n==0, 1, (4*n - 1)!/((2*n + 1)!*(2*n - 1)!)) } \\ Harry J. Smith, Oct 07 2009
-
PARI
vector(20, n, binomial(4*n-1, 2*n-1)/(2*n+1)) \\ Altug Alkan, Dec 08 2015
-
Sage
A065097 = lambda n: hypergeometric([1-2*n,-2*n],[2],1)/2 [Integer(A065097(n).n(500)) for n in (1..20)] # Peter Luschny, Sep 22 2014
Formula
a(n) = binomial(4*n-1, 2*n-1)/(2*n+1).
a(n) = C(2n)/2 where C(n) is the Catalan number A000108. - David Callan, Jun 01 2006
G.f.: 1/2 + (sqrt(2)/2)/sqrt(1+sqrt(1-16*x)). - Vladeta Jovovic, Sep 26 2003
G.f.: 1 + 3F2([1, 5/4, 7/4], [2, 5/2], 16*x). - Olivier Gérard, Feb 16 2011
O.g.f.: (1 + (cata(sqrt(x)) + cata(-sqrt(x)))/2)/2, with the o.g.f. cata(x) of the Catalan numbers. See the W. Lang comment above. - Wolfdieter Lang, Jan 05 2012
a(n) = hypergeometric([1-2*n,-2*n],[2],1)/2. - Peter Luschny, Sep 22 2014
a(n) = A001448(n) / (4*n + 2) if n>0. - Michael Somos, Oct 25 2014
n*(2*n+1)*a(n) - 2*(4*n-1)*(4*n-3)*a(n-1) = 0. - R. J. Mathar, Oct 31 2015
O.g.f. is 1 + Revert( x*(1 + x)/(1 + 2*x)^4 ). - Peter Bala, Dec 01 2015
Sum_{n>=0} 1/a(n) = 39/25 + 4*Pi/(9*sqrt(3)) - 24*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 02 2023
From Peter Bala, Apr 29 2024: (Start)
For n >= 1, a(n) = (1/8)*Sum_{k = 0..2*n-1} (-1)^k * 4^(2*n-k)*binomial(2*n-1, k)*Catalan(k+1).
For n >= 1, a(n) = (1/8)*(16^n)*hypergeom([1 - 2*n, 3/2], [3], 1). (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Nov 28 2021
Comments