cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A004601 Expansion of Pi in base 2 (or, binary expansion of Pi).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Keywords

Examples

			11.0010010000111111011010101000100010000...
		

References

  • J. P. Delahaye, Le Fascinant Nombre Pi, "100000 digits of pi in base two", pp. 209-210; Pour la Science, Paris 1997.

Crossrefs

Pi in base b: this sequence (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).

Programs

  • Maple
    convert(evalf(Pi), binary, 120);  # Alois P. Heinz, Dec 16 2018
  • Mathematica
    RealDigits[Pi, 2, 75][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 2], {n, 1, 100}] (* Joan Ludevid, Jun 24 2022;easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
  • PARI
    binary(Pi) \\ Altug Alkan, Apr 08 2018

A060421 Numbers k such that the first k digits of the decimal expansion of Pi form a prime.

Original entry on oeis.org

1, 2, 6, 38, 16208, 47577, 78073, 613373
Offset: 1

Views

Author

Michel ten Voorde, Apr 05 2001

Keywords

Comments

The Brown link states that in 2001 Ed T. Prothro reported discovering that 16208 gives a probable prime and that Prothro verified that all values for 500 through 16207 digits of Pi are composites. - Rick L. Shepherd, Sep 10 2002
The corresponding primes are in A005042. - Alexander R. Povolotsky, Dec 17 2007

Examples

			3 is prime, so a(1) = 1; 31 is prime, so a(2) = 2; 314159 is prime, so a(3) = 6; ...
		

Crossrefs

Primes in other constants: A064118 (e), A065815 (gamma), A064119 (phi), A118328 (Catalan's constant), A115377 (sqrt(2)), A119344 (sqrt(3)), A228226 (log 2), A228240 (log 10), A119334 (zeta(3)), A122422 (Soldner's constant), A118420 (Glaisher-Kinkelin constant), A174974 (Golomb-Dickman constant), A118327 (Khinchin's constant).
In other bases: A065987 (binary), A065989 (ternary), A065991 (quaternary), A065990 (quinary), A065993 (senary).

Programs

  • Mathematica
    Do[If[PrimeQ[FromDigits[RealDigits[N[Pi, n + 10], 10, n][[1]]]], Print[n]], {n, 1, 9016} ]

Extensions

a(6) = 47577 from Eric W. Weisstein, Apr 01 2006
a(7) = 78073 from Eric W. Weisstein, Jul 13 2006
a(8) = 613373 from Adrian Bondrescu, May 29 2016

A117721 Primes formed by the initial digits of the binary expansion of Pi.

Original entry on oeis.org

3, 6588397, 1686629713, 26986075409, 16703571626015105435307505830654230989, 13420802360424337830311681948440006481608388178854297901454212848703426437343610760199000777828079
Offset: 1

Views

Author

Carl R. White, Apr 13 2006

Keywords

Comments

Pi primes to base 2 (for base 10 see A005042). This sequence is the list of prime members of A068425.

Crossrefs

Cf. A004601 (the binary expansion), A005042, A068425, A065987 (where primes are).

A119017 Primes from binary expansion of Pi, another version. Starting with the first bit of the binary expansion, A004601 = 1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,... we move rightward until we encounter another 1. Since 11 (= 3 in decimal) is prime, we move to the next 1 and repeat the process.

Original entry on oeis.org

3, 73, 4639, 67, 3, 3, 3, 3, 3, 5, 3, 5, 5, 5, 17, 17, 1069, 5, 3, 5, 17, 3, 9099300883537, 17, 3, 5, 19, 3, 17, 19, 3, 17, 3, 19, 3, 17, 5, 17, 5, 3, 3, 257, 3, 5, 3, 3, 131, 3, 3, 19, 3, 5, 17, 37, 5, 1153, 1033, 73, 19, 3, 3, 16657, 17, 17, 5, 19, 3, 19, 3, 3, 3, 3, 19, 3, 17, 3, 3
Offset: 1

Views

Author

Russell Walsmith, Jul 23 2006

Keywords

Comments

Records: 3, 73, 4649, 9099300883537, 37848784972821936516494858855515680431107854546647118951099098009925403829863969526043052181881, ..., . - Robert G. Wilson v, Jul 24 2006

Examples

			11 = 3
1001001 = 73
1001000011111 = 4639
1000011 = 67
11 = 3
11 = 3
11 = 3
		

Crossrefs

Programs

  • Mathematica
    ps = First@RealDigits[Pi, 2, 10^3]; lst = {}; Do[k = 1; While[fd = FromDigits[ Take[ps, k], 2]; EvenQ@fd || ! PrimeQ@fd, k++ ]; AppendTo[lst, fd]; j = 1; While[ ps[[j]] != 1, j++ ]; ps = Drop[ps, j], {n, 77}]; lst (* Robert G. Wilson v, Jul 24 2006 *)

Extensions

More terms from Robert G. Wilson v, Jul 24 2006

A333649 Numbers k such that the second k binary digits of Pi represent a prime (leading zeros allowed).

Original entry on oeis.org

3, 7, 41, 93, 166, 316, 1449, 6605, 10015, 13097, 16284, 19075, 35137, 70558, 128436
Offset: 1

Views

Author

Robert Israel, Mar 31 2020

Keywords

Comments

Numbers k such that floor(2^(2*k-2)*Pi) mod 2^k is prime.
A random number of k binary digits has probability ~ constant/k of being prime, so heuristically we should expect the sequence to be infinite, but growing exponentially.
a(16) > 2*10^5. - Michael S. Branicky, Dec 17 2024

Examples

			a(2) = 7 is a term because the first 14 binary digits in Pi are 11.001001000011; the second 7 binary digits are 1000011, or 67 in decimal, which is prime.
		

Crossrefs

Programs

  • Maple
    L:= floor(Pi*2^19998):
    select(n -> isprime(floor(L*2^(2*n-20000)) mod 2^n), [$1..10000]);
  • PARI
    default(realprecision, 10^5);
    is(k) = ispseudoprime(floor(4^(k-1)*Pi)%2^k); \\ Jinyuan Wang, Mar 31 2020

Extensions

a(9) from Jinyuan Wang, Mar 31 2020
a(10)-a(13) from Chai Wah Wu, Apr 06 2020
a(14)-a(15) from Michael S. Branicky, Dec 16 2024

A119377 Numbers k such that the next k binary digits of Pi are odd primes with no leading zeros.

Original entry on oeis.org

2787, 6, 7, 23, 2, 3, 3, 8, 2, 2, 2, 5, 8, 2, 18, 9, 10, 413, 8, 3, 2, 4019, 14, 4, 2, 2, 11, 21, 4, 2, 3, 6, 2, 11, 3, 5, 19, 2, 6, 2, 4, 32, 2, 56, 31, 6, 7, 7, 2, 32, 20, 9, 10, 900, 2, 2, 2, 97, 5, 2, 8, 64, 3, 13, 3, 2, 6, 7, 15, 3, 2666, 7, 8, 3, 14, 3, 2, 2, 6, 5, 92, 17, 31, 4, 241, 78, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jul 24 2006

Keywords

Comments

Partition the string of binary digits of Pi in such a way that each partition begins and ends with 1 (thus no leading or trailing zeros) and each such partition is prime.
Pi_2 = 1100100100001111110110101010001000100001011010001100001000..._2 (A004601).
If 2 is allowed as a member, then the sequence begins: 2787,2,5,6,2,2,2,39,5,8,2,18,9,10,2,153,2,6,2,18,7,7,12,2,2,2,2,....

Examples

			a(1) represents the binary number 1100100100...(2767 terms)...0100000011 which equals the decimal number 7339860347...(819 terms)...8308318467 which is a prime.
a(2) represents the binary number 101001 which equals the decimal number 41, a prime.
		

Crossrefs

Programs

  • Mathematica
    ps = First@ RealDigits[Pi, 2, 12010]; lst = {}; Do[k = 1; While[fd = FromDigits[ Take[ps, k], 2]; EvenQ@fd || ps[[k + 1]] == 0 || !PrimeQ@fd, k++ ]; AppendTo[lst, k]; ps = Drop[ps, k], {n, 87}]; lst
Showing 1-6 of 6 results.