cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A066457 Numbers k such that product of factorials of digits of k equals pi(k) (A000720).

Original entry on oeis.org

13, 1512, 1520, 1521, 12016, 12035, 226130351, 209210612202, 209210612212, 209210612220, 209210612221, 13030323000581525
Offset: 1

Views

Author

Jason Earls, Jan 02 2002

Keywords

Comments

The Caldwell/Honaker paper does not discuss this, only suggests further areas of investigation.
There are no other members of the sequence up to and including n=1000000. - Harvey P. Dale, Jan 07 2002
If 10n is in the sequence and 10n+1 is composite then 10n+1 is also in the sequence (the proof is easy). - Farideh Firoozbakht, Oct 24 2008
a(13) > 10^19 if it exists. - Chai Wah Wu, May 03 2018

Examples

			12016 is a term because there are exactly 1!*2!*0!*1!*6! (or 1440) prime numbers less than or equal to 12016.
pi(209210612202) = 8360755200 = 2!*0!*9!*2!*1!*0!*6!*1!*2!*2!*0!*2!. [Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008]
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000000], Times@@( # !&/@IntegerDigits[ # ])==PrimePi[ # ]&]
  • PARI
    isok(n) = my(d = digits(n)); prod(k=1, #d, d[k]!) == primepi(n); \\ Michel Marcus, May 04 2018

Extensions

a(7) from Farideh Firoozbakht, Apr 20 2005
a(8)-a(11) from Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008
a(12) from Chai Wah Wu, May 03 2018

A197181 Numbers that are a divisor of the product of the factorials of their digits in decimal representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 18, 24, 28, 36, 45, 48, 60, 64, 70, 72, 75, 80, 84, 90, 96, 98, 128, 144, 168, 175, 180, 189, 192, 256, 280, 288, 360, 378, 384, 448, 480, 486, 567, 576, 588, 640, 648, 672, 675, 720, 729, 756, 768, 784, 840, 864, 875, 882
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 11 2011

Keywords

Examples

			a(10)=15: A066459(15) = 1!*5! = 120 = 15 * 8;
a(11)=16: A066459(16) = 1!*6! = 720 = 16 * 45;
17 is not a term because 5040 mod 17 = 8, A066459(16) = 5040;
a(12)=18: A066459(15) = 1!*8! = 40320 = 18 * 2240.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a197181 n = a197181_list !! (n-1)
    a197181_list = map (+ 1) $ elemIndices 0 $
       zipWith mod (map a066459 [1..]) [1..]
  • Mathematica
    Select[Range[900],IntegerQ[Times@@(IntegerDigits[#]!)/#]&] (* Harvey P. Dale, Jul 07 2019 *)

A034879 a(n) = product of factorials of digits of a(n-1).

Original entry on oeis.org

3, 6, 720, 10080, 40320, 288, 3251404800, 33443020800, 10032906240, 150493593600, 1179600089304268800000, 6494947622660923209343932825600000000, 817033558319976619871285124179533435912396304547840000000000000
Offset: 1

Views

Author

Keywords

Comments

The next term has 110 digits. - Harvey P. Dale, Oct 17 2011

Programs

  • Haskell
    a034879 n = a034879_list !! (n-1)
    a034879_list = iterate a066459 3  -- Reinhard Zumkeller, Oct 11 2011
  • Mathematica
    NestList[Times@@(IntegerDigits[#]!)&,3,12] (* Harvey P. Dale, Oct 17 2011 *)

Formula

a(n+1) = A066459(a(n)), a(1) = 3. - Reinhard Zumkeller, Oct 11 2011

Extensions

a(13) from Harvey P. Dale, Oct 17 2011

A061603 a(n) = n! / {product of factorials of the digits of n}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628800, 39916800, 239500800, 1037836800, 3632428800, 10897286400, 29059430400, 70572902400, 158789030400, 335221286400, 1216451004088320000, 25545471085854720000, 281000181944401920000, 2154334728240414720000
Offset: 0

Views

Author

Amarnath Murthy, May 19 2001

Keywords

Comments

It can be shown that the terms obtained by the above formula are positive integers using the fact that k! divides a product of k consecutive numbers.

Examples

			a(12) = (12!) / (1!*2!) = 239500800.
		

Crossrefs

Programs

  • Mathematica
    Table[n!/Times@@(IntegerDigits[n]!),{n,0,30}] (* Harvey P. Dale, Jan 19 2017 *)
  • PARI
    a(n) = my(d = digits(n)); n!/prod(k=1, #d, d[k]!); \\ Michel Marcus, Jul 02 2018

Formula

a(n) = A000142(n)/A066459(n). - Michel Marcus, Jul 02 2018

Extensions

Corrected and extended by Vladeta Jovovic, May 19 2001

A082939 Numbers such that sum of the digits of the product of the factorial of digits of the number is equal to the sum of the digits of the number.

Original entry on oeis.org

1, 2, 10, 18, 20, 22, 27, 36, 63, 72, 81, 100, 108, 114, 117, 126, 135, 141, 153, 162, 171, 180, 200, 202, 207, 216, 220, 261, 270, 306, 315, 333, 351, 360, 411, 513, 531, 603, 612, 621, 630, 702, 711, 720, 801, 810, 1000, 1008, 1014, 1017, 1026, 1035, 1041
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 27 2003

Keywords

Examples

			63 = 6!*3! = 720*6 = 4320, 4 + 3 + 2 + 0 = 9 and 6 + 3 = 9.
		

References

Crossrefs

Programs

  • Python
    from math import factorial, prod
    def ok(n):
        d = list(map(int, str(n)))
        return sum(map(int, str(prod(map(factorial, d))))) == sum(d)
    print([k for k in range(1042) if ok(k)]) # Michael S. Branicky, Aug 15 2022

Formula

Numbers k such that A007953(k) = A007953(A066459(k)).

Extensions

Corrected and extended by Jason Earls, May 22 2004

A137603 Numbers m such that product of factorials of digits of m equals sigma(m).

Original entry on oeis.org

1, 14, 1253, 2261, 2622, 13145, 13630, 20146, 24035, 30362, 31416, 42504, 50424, 63240, 112281, 117124, 126005, 150360, 161160, 225153, 252126, 262105, 318021, 341630, 510632, 611523, 723104, 1071521, 1131190, 1153262, 1200626, 1242108
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 11 2008

Keywords

Examples

			sigma(10230248)=1!*0!*2!*3!*0!*2!*4!*8! so 10230248 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1250000],Times@@(IntegerDigits[#]!)==DivisorSigma[1,#]&] (* James C. McMahon, Jun 01 2025 *)

A188264 Numbers m that are divisible by the product of the factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 10, 11, 12, 20, 30, 100, 101, 102, 110, 111, 112, 120, 132, 200, 210, 212, 220, 240, 300, 312, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1032, 1100, 1101, 1102, 1104, 1110, 1111, 1112, 1120, 1200, 1210, 1212, 1220, 1320, 2000, 2010, 2012, 2020, 2100, 2110, 2112
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2011

Keywords

Examples

			Number 30 is in sequence because 30 is divisible by the product of factorials 3!*0! = 6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a188264 n = a188264_list !! (n-1)
    a188264_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod [1..] $ map a066459 [1..]
    -- Reinhard Zumkeller, Oct 11 2011
  • Mathematica
    Select[Range[2200],Divisible[#,Times@@(IntegerDigits[#]!)]&] (* Harvey P. Dale, May 24 2017 *)

A384955 a(n) is the multinomial coefficient of the digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005
Offset: 0

Views

Author

Stefano Spezia, Jun 13 2025

Keywords

Examples

			a(35) = (3+5)!/(3!*5!) = 40320/(6*120) = 56;
a(1512) = (1+5+1+2)!/(1!*5!*1!*2!) = 362880/(120*2) = 1512.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> combinat[multinomial](add(i,i=l), l[]))(convert(n, base, 10)):
    seq(a(n), n=0..69);  # Alois P. Heinz, Jun 15 2025
  • Mathematica
    a[n_]:=Multinomial @@IntegerDigits[n]; Array[a,70,0]
  • Python
    from math import factorial, prod
    def a(n): return factorial(sum(digits:=list(map(int, str(n))))) // prod(factorial(x) for x in digits)
    print([a(n) for n in range(70)]) # David Radcliffe, Jun 15 2025

Formula

a(n) = A269221(n)/A066459(n).
a(n) = 1 iff n is equal to 0 or has only one nonzero digit (cf. A037124).
Conjecture: a(n) = n iff n = 1 or n = 1512.
Showing 1-8 of 8 results.