cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A062028 a(n) = n + sum of the digits of n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 77
Offset: 0

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(n) = A248110(n,A007953(n)). - Reinhard Zumkeller, Oct 01 2014

Examples

			a(34) = 34 + 3 + 4 = 41, a(40) = 40 + 4 = 44.
		

Crossrefs

Indices of: A047791 (primes), A107743 (composites), A066564 (squares), A084661 (cubes).
Iterations: A004207 (start=1), A016052 (start=3), A007618 (start=5), A006507 (start=7), A016096 (start=9).

Programs

  • Haskell
    a062028 n = a007953 n + n  -- Reinhard Zumkeller, Oct 11 2013
    
  • Maple
    with(numtheory): for n from 1 to 100 do a := convert(n,base,10):
    c := add(a[i],i=1..nops(a)): printf(`%d,`,n+c); od:
    A062028 := n -> n+add(i,i=convert(n,base,10)) # M. F. Hasler, Nov 08 2018
  • Mathematica
    Table[n + Total[IntegerDigits[n]], {n, 0, 100}]
  • PARI
    A062028(n)=n+sumdigits(n) \\ M. F. Hasler, Jul 19 2015
    
  • Python
    def a(n): return n + sum(map(int, str(n)))
    print([a(n) for n in range(71)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n + A007953(n).
a(n) = A160939(n+1) - 1. - Filip Zaludek, Oct 26 2016

Extensions

More terms from Vladeta Jovovic, Jun 05 2001

A066566 Numbers that when decremented by the sum of their digits produce a square.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 330, 331, 332, 333
Offset: 1

Views

Author

Amarnath Murthy, Dec 18 2001

Keywords

Comments

The squares in this sequence are divisible by 9.

Examples

			155 is a member as 155 - 1 - 5 - 5 = 144 = 12^2.
		

Crossrefs

Cf. A066564.

Programs

  • Mathematica
    Select[Range[0,350],IntegerQ[Sqrt[#-Total[IntegerDigits[#]]]]&]  (* Harvey P. Dale, Feb 24 2011 *)
  • PARI
    isok(k)={issquare(k-sumdigits(k))}

Extensions

More terms from Jason Earls, Dec 20 2001
Offset changed from 0 to 1 by Harry J. Smith, Mar 05 2010

A066567 Numbers that when incremented by the product of their digits produce a square.

Original entry on oeis.org

2, 8, 13, 63, 91, 100, 128, 185, 215, 221, 337, 400, 448, 456, 549, 551, 559, 681, 900, 1024, 1089, 1151, 1185, 1215, 1221, 1327, 1348, 1437, 1600, 1651, 1897, 2025, 2112, 2191, 2196, 2209, 2293, 2304, 2392, 2401, 2448, 2500, 2539, 2544, 2551, 2596, 2601
Offset: 1

Views

Author

Amarnath Murthy, Dec 18 2001

Keywords

Examples

			63 belongs to this sequence as 63 + 6*3 = 81 = 9^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n + Apply[ Times, IntegerDigits[n]]; Select[ Range[ 2500], IntegerQ[ Sqrt[ f[ # ]]] & ]
    Select[Range[3000],IntegerQ[Sqrt[#+Times@@IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 15 2024 *)
  • PARI
    isok(k) = issquare(k+vecprod(digits(k))); \\ Harry J. Smith, Mar 05 2010

Extensions

More terms from Robert G. Wilson v, Dec 22 2001
Offset changed from 0 to 1 by Harry J. Smith, Mar 05 2010

A084661 Numbers k such that k + sum_of_digits(k) is a cube.

Original entry on oeis.org

4, 18, 121, 198, 207, 329, 720, 977, 1318, 2183, 2731, 3357, 4082, 4891, 4900, 5814, 6836, 7969, 9243, 10634, 12154, 13797, 13806, 15611, 17554, 19656, 21929, 24367, 26973, 29759, 32746, 39281, 42853, 46629, 54850, 59292, 59301, 63968, 68890, 74070, 79475
Offset: 1

Views

Author

Zak Seidov, Jun 29 2003

Keywords

Comments

A066564 lists numbers k such that k + sum_of_digits(k) is a square.

Examples

			a(3)=121 because 121 + (1 + 2 + 1) = 125 = 5^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[80000],IntegerQ[Surd[#+Total[IntegerDigits[#]],3]]&] (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    isok(n) = ispower(n + sumdigits(n), 3); \\ Michel Marcus, Oct 09 2013

Extensions

More terms from Michel Marcus, Oct 04 2013

A230087 Primes such that prime plus its digit sum is a perfect square.

Original entry on oeis.org

2, 17, 179, 347, 467, 521, 1433, 1583, 2111, 3347, 10601, 12527, 25889, 28541, 32027, 33113, 39569, 39971, 41201, 43661, 45767, 55667, 58061, 59513, 61001, 62969, 63977, 67061, 70199, 77261, 92387, 92993, 100469, 109541, 120401, 122477, 130307, 156011, 163193
Offset: 1

Views

Author

K. D. Bajpai, Oct 08 2013

Keywords

Comments

Number of primes obtained from the sequence ‘prime plus its digit sum is perfect square’ is 150 for n = 1 to 3*10^5, while the sequence for ‘perfect cube’ yields only 11 primes for the same range of n. Hence, sequence for ‘square’ is framed.
Subsequence of primes of A066564. - Michel Marcus, Jun 02 2015

Examples

			a(2) = 17 is prime. Digit sum of 17 = 8, 17 + 8 = 25 = 5^2.
a(5) = 467 is prime. Digit sum of 467 = 17, 467 + 17 = 484 = 22^2.
		

Crossrefs

Cf. A048519.
Cf. A107288 (Primes whose digit sum is square).

Programs

  • Magma
    [p: p in PrimesUpTo(6*10^5) | IsSquare(p+(&+Intseq(p)))]; // Vincenzo Librandi, Jun 02 2015
  • Maple
    KD:= proc() local a,b,c,d; a:= ithprime(n);b:=add( i,i = convert((a), base, 10))(a); c:=a+b; d:=evalf(sqrt(c)); if d=floor(d) then return (a) :fi;end:seq(KD(),n=1..50000);
  • PARI
    for(n=2,1e4,forprime(p=n^2-9*#digits(n^2),n^2, if(p+sumdigits(p) == n^2, print1(p", ")))) \\ Charles R Greathouse IV, Oct 08 2013
    

Extensions

a(1) from Charles R Greathouse IV, Oct 08 2013

A362069 Numbers k such that k+digitsum(k^2) is a square.

Original entry on oeis.org

0, 17, 62, 71, 117, 125, 197, 206, 296, 297, 305, 413, 414, 557, 558, 692, 702, 711, 863, 864, 872, 873, 1062, 1070, 1071, 1268, 1493, 1502, 1727, 1736, 1737, 1745, 1998, 2006, 2267, 2276, 2285, 2564, 2565, 2573, 2879, 2888, 2889, 3221, 3222
Offset: 1

Views

Author

Alexandru Petrescu, May 17 2023

Keywords

Comments

Conjecture: there are infinitely many pairs of consecutive terms. Example: (296,297); (413,414); (863,864).

Examples

			k=17 is a term because k^2=289 and 17+2+8+9=36=6^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 3300], IntegerQ[Sqrt[# + Plus @@ IntegerDigits[#^2]]] &] (* Amiram Eldar, May 18 2023 *)
  • PARI
    isok(k)=issquare(k+sumdigits(k^2))
Showing 1-6 of 6 results.