cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A068191 Numbers n such that A067734(n)=0; complement of A002473; at least one prime-factor of n is larger than 7, it has 2 decimal digits.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

Also numbers n such that A198487(n) = 0 and A107698(n) = 0. - Jaroslav Krizek, Nov 04 2011
A086299(a(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
A262401(a(n)) < a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers not in A007954. - Mohammed Yaseen, Sep 13 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a068191 n = a068191_list !! (n-1)
    a068191_list = map (+ 1) $ elemIndices 0 a086299_list
    -- Reinhard Zumkeller, Apr 01 2012
    
  • Mathematica
    Select[Range@120, Last@Map[First, FactorInteger@#] > 7 &] (* Vincenzo Librandi, Sep 19 2016 *)
  • Python
    from sympy import integer_log
    def A068191(n):
        def f(x):
            c = n
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c += (r//3**k).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024

A068189 Smallest positive number whose product of digits equals n, or a(n)=0 if no such number exists, i.e. when n has a prime divisor greater than 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 0, 26, 0, 27, 35, 28, 0, 29, 0, 45, 37, 0, 0, 38, 55, 0, 39, 47, 0, 56, 0, 48, 0, 0, 57, 49, 0, 0, 0, 58, 0, 67, 0, 0, 59, 0, 0, 68, 77, 255, 0, 0, 0, 69, 0, 78, 0, 0, 0, 256, 0, 0, 79, 88, 0, 0, 0, 0, 0, 257, 0, 89, 0, 0, 355, 0, 0, 0, 0, 258, 99, 0, 0, 267, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

a(n) > 0 if and only if n is in A002473.

Examples

			n=2,10,50,250 gives a(n)=2,25,255,2555; n=11,39,78, etc..a(n)=0.
10000 = 2 * 5 * 5 * 5 * 5 * 8. No product of two of these factors is less than 10 so a(10000) = 255558 (the concatenation of these factors in nondecreasing order). - _David A. Corneth_, Jul 31 2017
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[Times, IntegerDigits[x]] a = Table[0, {256} ]; Do[ b = f[n]; If[b < 257 && a[[b]] == 0, a[[b]] =n], {n, 1, 10000} ]; a
  • PARI
    a(n) = {if(n==1, return(1)); my(res = []); forstep(i=9,2,-1, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017
    
  • Python
    def convert(n):
        if n == 1:
            return 1
        result = 0
        cur = 1
        while n > 1:
            found = False
            for i in range(9, 1, -1):
                if n % i == 0:
                    result += cur * i
                    cur *= 10
                    n //= i
                    found = True
                    break
            if not found:
                return 0
        return result
    N = 256
    for n in range(1, N):
        print(n, convert(n))
    # Dmitry Kamenetsky, Oct 20 2008

A068183 Largest number without decimal digits equal to 1 whose product of digits gives n!.

Original entry on oeis.org

2, 32, 3222, 53222, 5332222, 75332222, 75332222222, 7533332222222, 755333322222222
Offset: 2

Views

Author

Labos Elemer, Feb 18 2002

Keywords

Comments

Maximal solutions are obtained from the concatenation of distinct prime factors that have one decimal digit. The sequence is finite because, for n>10, n! has 2-digit prime factors.

Crossrefs

Formula

a(n)=Max{x; f[x]=n!}, where x has no digit=1 and f[x_] := Apply[Times, IntegerDigits[x]].

A068187 a(n) is the smallest number such that the product of its decimal digits equals n^n, or 0 if no solutions exist.

Original entry on oeis.org

1, 4, 39, 488, 55555, 88999, 7777777, 88888888, 999999999, 25555555555888, 0, 88888888999999, 0, 4777777777777778888, 35555555555555559999999, 2888888888888888888888, 0, 888888999999999999999999, 0, 2555555555555555555558888888888888, 37777777777777777777779999999999
Offset: 1

Views

Author

Labos Elemer, Feb 18 2002

Keywords

Comments

a(n) = 0 if and only if n has a prime factor > 7. If n > 1 has no prime factor > 7, let n^n = 2^a*3^b*5^c*7^d. Let m(x) denote the number of digit x in a(n). Then a(n) is a number whose digits are nondecreasing and defined as follows. m(2) = 1 if a mod 3 == 1 and 0 otherwise, m(3) = 1 if b mod 2 == 1 and 0 otherwise, m(4) = 1 if a mod 3 == 2 and 0 otherwise, m(5) = c, m(6) = 0, m(7) = d, m(8) = floor(a/3), m(9) = floor(b/2). - Chai Wah Wu, Aug 12 2017

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068187(n):
        if n == 1:
            return 1
        pf = factorint(n)
        return 0 if max(pf) > 7 else int(''.join(sorted(''.join(str(a)*(n*b) for a,b in pf.items()).replace('222','8').replace('22','4').replace('33','9')))) # Chai Wah Wu, Aug 13 2017

Extensions

Edited by Dean Hickerson and Henry Bottomley, Mar 07 2002

A068184 Smallest number whose product of digits equals n!.

Original entry on oeis.org

1, 1, 2, 6, 38, 358, 2589, 25789, 257889, 2578879, 45578899
Offset: 0

Views

Author

Labos Elemer, Feb 18 2002

Keywords

Comments

The sequence is finite because n! for n>10 has 2-digit prime factors.

Examples

			For n=4 the solutions having digit products equal 24 excluding those with digit 1 are: {38, 46, 64, 83, 226, 234, 243, 262, 324, 342, 423, 432, 622, 2223, 2232, 2322, 3222} of which the smallest is 38. For n>1, numbers with a digit 1 are too big.
		

Crossrefs

Extensions

Edited by Henry Bottomley, Feb 26 2002

A068185 Number of ways writing n^n as a product of decimal digits of some other number which has no digits equal to 1.

Original entry on oeis.org

0, 2, 3, 81, 1, 102136, 1, 1389537, 4181, 4972825, 0, 12718670252691776, 0, 4506838380, 11472991008, 53560898629395777, 0, 514875062240230100091396, 0, 164997736300578242823300, 241098942106440, 0, 0, 3203410440031870942324022423896806853153460, 1, 0, 61305790721611591
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

a(n)= 0 when n has prime-factor larger than 7 [so A067734(n)=0] or when n is in A068191, i.e. not in A002473.

Examples

			n=1 has no solution; a(2)=A000073(6)=2 with {4,22} solutions; a(3)=A067734(27)=3=Fibonacci[4]; n=5 and n=7, n^n has single prime factor of which any true multiple have 2 digits so 55555 and 7777777 are the only solutions, so a(5)=a(7)=1; a(4)=A067734(256)=81=A000073(10); a(8)=A067734(2^24)=A000073(26)=1389537; n=9 a(9)=A067734(3^27)=4181.
		

Crossrefs

Formula

a(n) = A067734(n^n) = A067734(A000312(n))

Extensions

Edited By Henry Bottomley, Feb 26 2002.
Edited and extended by Max Alekseyev, Sep 19 2009
a(9) corrected by Sean A. Irvine, Feb 01 2024

A068186 a(n) is the largest number whose product of decimal digits equals n^n.

Original entry on oeis.org

22, 333, 22222222, 55555, 333333222222, 7777777, 222222222222222222222222, 333333333333333333, 55555555552222222222, 0, 333333333333222222222222222222222222, 0, 7777777777777722222222222222
Offset: 2

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

No digit=1 is permitted to avoid infinite number of solutions; a(n)=0 if A067734(n^n)=0.

Examples

			n=10, 10^10=10000000000, a(5)=55555555552222222222.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068186(n):
        if n == 1:
            return 1
        pf = factorint(n)
        ps = sorted(pf.keys(),reverse=True)
        if ps[0] > 7:
            return 0
        s = ''
        for p in ps:
            s += str(p)*(n*pf[p])
        return int(s) # Chai Wah Wu, Aug 12 2017

Formula

a(n) is obtained as prime factors of n^n concatenated in order of magnitude and with repetitions; a(n)=0 if n has p > 7 prime factors.

Extensions

a(12) corrected by Chai Wah Wu, Aug 12 2017

A068190 Largest number whose digit product equals n; a(n)=0 if no such number exists, e.g., when n has a prime factor larger than 7; no digit=1 is permitted to avoid an infinite number of solutions.

Original entry on oeis.org

0, 2, 3, 22, 5, 32, 7, 222, 33, 52, 0, 322, 0, 72, 53, 2222, 0, 332, 0, 522, 73, 0, 0, 3222, 55, 0, 333, 722, 0, 532, 0, 22222, 0, 0, 75, 3322, 0, 0, 0, 5222, 0, 732, 0, 0, 533, 0, 0, 32222, 77, 552, 0, 0, 0, 3332, 0, 7222, 0, 0, 0, 5322, 0, 0, 733, 222222, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[#[[-1, 1]] > 7, 0, FromDigits@ Reverse@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #]] &@ FactorInteger@ # &, 69] /. 1 -> 0 (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    a(n) = {my(res = []); for(i=2, 9, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017

Formula

If a solution exists, a(n) is the concatenation of prime factors with repetitions and in order of magnitude, otherwise a(n)=0.

Extensions

a(36) corrected by David A. Corneth, Jul 31 2017

A288738 Number of ways writing the n-th 7-smooth number as a product of decimal digits of some other number which has no digits equal to 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 1, 1, 4, 3, 2, 1, 5, 1, 2, 2, 2, 5, 1, 6, 3, 2, 2, 7, 1, 1, 4, 3, 3, 2, 7, 1, 9, 1, 4, 3, 3, 3, 9, 1, 2, 1, 7, 4, 5, 1, 3, 8, 2, 2, 13, 1, 2, 5, 5, 5, 1, 6, 2, 12, 2, 3, 2, 12, 5, 2, 7, 3, 1, 1, 6, 10, 4, 3, 17, 2, 3, 2, 7, 10, 7
Offset: 1

Views

Author

David A. Corneth, Jun 22 2017

Keywords

Comments

This sequence is A067734 without the zeros.

Crossrefs

A069468 Number of ways writing n! as a product of some other numbers which has no digits equal to 1.

Original entry on oeis.org

0, 1, 3, 17, 68, 807, 5310, 121536, 2775630, 48782385, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Mar 25 2002

Keywords

Examples

			n=4, 4!=24, A067734(24)=17 and the 17 solutions are as follows: {38,46,64,83,226,234,243,262,324,342,423,432,622,2223,2232,2322,3222}.
		

Crossrefs

Formula

a(n) = A067734(n!) = A067734(A000142(n)).
a(n) = 0 if n>10 since A068184 and A067185 are complete sequences.

Extensions

More terms from Max Alekseyev, Sep 19 2009
Showing 1-10 of 10 results.