A068028 Decimal expansion of 22/7.
3, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4
Offset: 1
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 239.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.
Links
- D. Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163. - _N. J. A. Sloane_, Mar 24 2012
- D. P. Dalzell, On 22/7, J. London Math. Soc. 19, 133-134, 1944.
- Dale Winham, Facts about Pi.
- Index entries for sequences related to the number Pi.
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Programs
-
Magma
I:=[3,1,4,2,8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
-
Mathematica
CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *) Join[{3},LinearRecurrence[{1, 0, -1, 1},{1, 4, 2, 8},104]] (* Ray Chandler, Aug 26 2015 *) RealDigits[22/7,10,120][[1]] (* Harvey P. Dale, Oct 04 2021 *)
Formula
a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - Sascha Kurz, Mar 23 2002 [corrected by Jason Yuen, Aug 18 2024]
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015
Extensions
More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010
Comments