cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Nenad Radakovic

Nenad Radakovic's wiki page.

Nenad Radakovic has authored 3 sequences.

A068089 Decimal expansion of 104348 / 33215.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 9, 2, 1, 4, 2, 1, 0, 4, 4, 7, 0, 8, 7, 1, 5, 9, 4, 1, 5, 9, 2, 6, 5, 3, 9, 2, 1, 4, 2, 1, 0, 4, 4, 7, 0, 8, 7, 1, 5, 9, 4, 1, 5, 9, 2, 6, 5, 3, 9, 2, 1, 4, 2, 1, 0, 4, 4, 7, 0, 8, 7, 1, 5, 9, 4, 1, 5, 9, 2, 6, 5, 3, 9, 2, 1, 4, 2, 1, 0, 4, 4, 7, 0, 8, 7, 1, 5, 9, 4, 1, 5, 9, 2, 6, 5
Offset: 1

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.00000001056%.

Programs

  • Mathematica
    First[RealDigits[104348/33215,10,100]] (* Paolo Xausa, Nov 07 2023 *)

Extensions

More terms from Sascha Kurz, Mar 23 2002

A068028 Decimal expansion of 22/7.

Original entry on oeis.org

3, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4
Offset: 1

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.04025%.
Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - K.V.Iyer, Jun 16 2010, Jun 18 2010
The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - Peter Bala, Oct 12 2021

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 239.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

Programs

  • Magma
    I:=[3,1,4,2,8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
  • Mathematica
    CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
    Join[{3},LinearRecurrence[{1, 0, -1, 1},{1, 4, 2, 8},104]] (* Ray Chandler, Aug 26 2015 *)
    RealDigits[22/7,10,120][[1]] (* Harvey P. Dale, Oct 04 2021 *)

Formula

a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - Sascha Kurz, Mar 23 2002 [corrected by Jason Yuen, Aug 18 2024]
Equals 100*A021018 - 4 = 3 + A020806. - R. J. Mathar, Sep 30 2008
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015

Extensions

More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010

A068079 Decimal expansion of 355 / 113.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 9, 2, 0, 3, 5, 3, 9, 8, 2, 3, 0, 0, 8, 8, 4, 9, 5, 5, 7, 5, 2, 2, 1, 2, 3, 8, 9, 3, 8, 0, 5, 3, 0, 9, 7, 3, 4, 5, 1, 3, 2, 7, 4, 3, 3, 6, 2, 8, 3, 1, 8, 5, 8, 4, 0, 7, 0, 7, 9, 6, 4, 6, 0, 1, 7, 6, 9, 9, 1, 1, 5, 0, 4, 4, 2, 4, 7, 7, 8, 7, 6, 1, 0, 6, 1, 9, 4, 6, 9, 0, 2, 6, 5, 4, 8, 6, 7, 2, 5, 6, 6, 3, 7, 1, 6, 8, 1, 4, 1, 5, 9, 2
Offset: 1

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.00000849%.
355/113 is the third convergent of the continued fraction expansion of Pi (A001203). - Lekraj Beedassy, Jun 18 2003
In one of Ramanujan's papers, a note at the bottom states that "If the area of the circle be 140,000 square miles, then RD [RD = d/2 * Sqrt(355/113) = r*Sqrt(Pi), very nearly] is greater than the true length by about an inch."
This approximation of Pi was suggested by the astronomer Tsu Chúng-chih (A.D. 430 - 501) (see Gullberg). - Stefano Spezia, Jan 13 2025

Examples

			3.141592920353982300884955752212389380530973451327433628318584...
		

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 88.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 238-239.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi, p. 91.
  • Ramanujan's papers, "Squaring the circle", Journal of the Indian Mathematical Society, V, 1913, 132. - Robert G. Wilson v, May 30 2014
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

Programs

Formula

a(n) = a(n - 112) for n > 113. - Jeppe Stig Nielsen, Dec 14 2019

Extensions

More terms from Sascha Kurz, Mar 23 2002
Terms a(106) and beyond from Jeppe Stig Nielsen, Dec 14 2019