A020806 Decimal expansion of 1/7.
1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2
Offset: 0
Examples
0.142857142857142857...
References
- H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, 'Die periodischen Dezimalbrüche'.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
Links
- J. Hall, One-Seventh Ellipse, on MathWorld, by E. W. Weisstein.
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Programs
-
Magma
I:=[1,4,2,8]; [n le 4 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
-
Maple
Digits:=100: evalf(1/7); # Wesley Ivan Hurt, Jun 28 2016
-
Mathematica
CoefficientList[Series[(1 + 3 x - 2 x^2 + 7 x^3) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *) realDigitsRecip[7] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Sep 18 2024 *)
-
PARI
1/7. \\ Charles R Greathouse IV, Sep 24 2015
-
PARI
digits(10^99\7) \\ M. F. Hasler, Oct 25 2017
Formula
From Reinhard Zumkeller, Oct 06 2008: (Start)
a(n+6) = a(n), a(n+6/2) = 9 - a(n). (End)
From Colin Barker, Aug 14 2012: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: (1+3*x-2*x^2+7*x^3) / ((1-x)*(1+x)*(1-x+x^2)). (End)
a(n) = A068028(n+2). - Zak Seidov, Mar 26 2015
a(n) = (27 - 11*cos(n*Pi) - 10*cos(n*Pi/3) - 6*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 28 2016
E.g.f.: (8*cosh(x) - exp(x/2)*(5*cos(sqrt(3)*x/2) + 3*sqrt(3)*sin(sqrt(3)*x/2)) + 19*sinh(x))/3. - Stefano Spezia, Dec 07 2024
Comments