cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A068028 Decimal expansion of 22/7.

Original entry on oeis.org

3, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4
Offset: 1

Views

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.04025%.
Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - K.V.Iyer, Jun 16 2010, Jun 18 2010
The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - Peter Bala, Oct 12 2021

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 239.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2,8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
  • Mathematica
    CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
    Join[{3},LinearRecurrence[{1, 0, -1, 1},{1, 4, 2, 8},104]] (* Ray Chandler, Aug 26 2015 *)
    RealDigits[22/7,10,120][[1]] (* Harvey P. Dale, Oct 04 2021 *)

Formula

a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - Sascha Kurz, Mar 23 2002 [corrected by Jason Yuen, Aug 18 2024]
Equals 100*A021018 - 4 = 3 + A020806. - R. J. Mathar, Sep 30 2008
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015

Extensions

More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010

A068079 Decimal expansion of 355 / 113.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 9, 2, 0, 3, 5, 3, 9, 8, 2, 3, 0, 0, 8, 8, 4, 9, 5, 5, 7, 5, 2, 2, 1, 2, 3, 8, 9, 3, 8, 0, 5, 3, 0, 9, 7, 3, 4, 5, 1, 3, 2, 7, 4, 3, 3, 6, 2, 8, 3, 1, 8, 5, 8, 4, 0, 7, 0, 7, 9, 6, 4, 6, 0, 1, 7, 6, 9, 9, 1, 1, 5, 0, 4, 4, 2, 4, 7, 7, 8, 7, 6, 1, 0, 6, 1, 9, 4, 6, 9, 0, 2, 6, 5, 4, 8, 6, 7, 2, 5, 6, 6, 3, 7, 1, 6, 8, 1, 4, 1, 5, 9, 2
Offset: 1

Views

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.00000849%.
355/113 is the third convergent of the continued fraction expansion of Pi (A001203). - Lekraj Beedassy, Jun 18 2003
In one of Ramanujan's papers, a note at the bottom states that "If the area of the circle be 140,000 square miles, then RD [RD = d/2 * Sqrt(355/113) = r*Sqrt(Pi), very nearly] is greater than the true length by about an inch."
This approximation of Pi was suggested by the astronomer Tsu Chúng-chih (A.D. 430 - 501) (see Gullberg). - Stefano Spezia, Jan 13 2025

Examples

			3.141592920353982300884955752212389380530973451327433628318584...
		

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 88.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 238-239.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi, p. 91.
  • Ramanujan's papers, "Squaring the circle", Journal of the Indian Mathematical Society, V, 1913, 132. - Robert G. Wilson v, May 30 2014
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

Crossrefs

Programs

Formula

a(n) = a(n - 112) for n > 113. - Jeppe Stig Nielsen, Dec 14 2019

Extensions

More terms from Sascha Kurz, Mar 23 2002
Terms a(106) and beyond from Jeppe Stig Nielsen, Dec 14 2019

A072398 Numerator of best approximation to Pi with denominator <= 10^n.

Original entry on oeis.org

3, 22, 22, 355, 355, 312689, 1146408, 5419351, 245850922, 2549491779, 21053343141, 21053343141, 1783366216531, 8958937768937, 139755218526789, 428224593349304, 30246273033735921, 66627445592888887
Offset: 0

Views

Author

Rick L. Shepherd, Jun 15 2002

Keywords

Examples

			A072398(5) = 312689 because A072398(5)/A072399(5) = 312689/99532 is the best rational approximation to Pi with positive denominator <= 10^5 = 100000. This approximation is accurate to 0.00000000092766%.
		

Crossrefs

Cf. A072399 (denominators), A000796 (Pi), A068089, A002485/A002486.

Programs

  • Mathematica
    nmax = 17; cv = Convergents[Pi, 2*nmax] // Reverse; a[n_] := Select[cv, Denominator[#] <= 10^n &, 1] // Numerator // First; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    for(n=0,40,print1(numerator(bestappr(Pi,10^n)),",")) \\ Finds these approximations very quickly.

A072399 Denominator of best approximation to Pi with denominator <= 10^n.

Original entry on oeis.org

1, 7, 7, 113, 113, 99532, 364913, 1725033, 78256779, 811528438, 6701487259, 6701487259, 567663097408, 2851718461558, 44485467702853, 136308121570117, 9627687726852338, 21208174623389167, 842468587426513207
Offset: 0

Views

Author

Rick L. Shepherd, Jun 15 2002

Keywords

Examples

			a(6) = 364913 because A072398(6)/a(6) = 1146408/364913 is the best rational approximation to Pi with positive denominator <= 10^6 = 1000000. This approximation is accurate to 0.000000000051271%.
		

Crossrefs

Cf. A072398 (numerators), A000796 (Pi), A068089, A002485/A002486.

Programs

  • Mathematica
    nmax = 18; cv = Convergents[Pi, 2*nmax] // Reverse; a[n_] := Select[cv, Denominator[#] <= 10^n &, 1] // Denominator // First; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    for(n=0,40,print1(denominator(bestappr(Pi,10^n)),",")) \\ Finds these approximations very quickly.

A328927 Decimal expansion of (9^2 + (19^2)/22)^(1/4): an approximation for Pi from Srinivasa Ramanujan.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 2, 5, 8, 2, 6, 4, 6, 1, 2, 5, 2, 0, 6, 0, 3, 7, 1, 7, 9, 6, 4, 4, 0, 2, 2, 3, 7, 1, 5, 5, 7, 8, 7, 7, 9, 8, 3, 1, 6, 0, 1, 2, 6, 1, 4, 9, 6, 9, 5, 1, 3, 5, 3, 2, 7, 9, 1, 8, 6, 2, 1, 0, 5, 8, 8, 4, 9, 7, 8, 1, 0, 1, 1, 2, 3, 4, 0, 8, 9, 2, 6, 0, 9, 5, 7, 0, 3, 9, 5, 5, 5
Offset: 1

Views

Author

Bernard Schott, Oct 31 2019

Keywords

Comments

Srinivasa Ramanujan published this curious empirical approximation in 1914 accompanied with a simple geometric construction for Pi based on this value of (9^2 + (19^2)/22)^(1/4) [See Ramanujan link, page 43, section 12, and page 44, Figure 2].
S. Ramanujan found 3.14159265262... as the value for this approximation in 1914 while Maple gives 3.14159265258... and Pi = 3.14159265358...
This approximation is correct to 10^(-8).
Gardner (1985) wrote: "A more astounding discovery is that: 22 pi^4 = 2143. A few multiplications, and the 10 million-plus decimals of pi have vanished. (Can this remarkable relationship mirror some as yet undiscovered facet of physical reality?)" In the Postscript to the 1999 reprint he writes "Divide 2143 (the first four counting numbers) by 22 and hit the square-root button twice. You will get pi to eight decimals", and credits this discovery to Srinivasa Ramanujan. The MathOverflow page also mentions this and the near-integer 10*Pi^4 - 1/11 ≈ 974.0000012... See A352548 for 22*Pi^4. - M. F. Hasler, Jun 22 2022

Examples

			3.141592652582646125206037179644022371557877983160126149695135327918621058849...
		

References

  • Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved 5 June 2013, (4.18), page 58.
  • Martin Gardner, "Slicing Pi into Millions", Discover, 6:50, January 1985.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.

Crossrefs

Programs

  • Maple
    evalf((9^2 + (19^2)/22)^(1/4),125);
  • Mathematica
    RealDigits[Surd[9^2 + (19^2)/22, 4], 10, 120][[1]] (* Amiram Eldar, Jun 18 2023 *)
  • PARI
    A328927_first(N)=localprec(N+9); digits(10^N\sqrtn(22/.2143,4)) \\ First N terms of the sequence, i.e., a(1, 0, -1, ..., 2-N). - M. F. Hasler, Jun 22 2022

Formula

Equals (102 - 2222/(22^2))^(1/4) = (2143/22)^(1/4).

A374322 Decimal expansion of sqrt(2)*9801/4412.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 7, 3, 0, 0, 1, 3, 3, 0, 5, 6, 6, 0, 3, 1, 3, 9, 9, 6, 1, 8, 9, 0, 2, 5, 2, 1, 5, 5, 1, 8, 5, 9, 9, 5, 8, 1, 6, 0, 7, 1, 1, 0, 0, 3, 3, 5, 5, 9, 6, 5, 6, 5, 3, 6, 2, 9, 0, 1, 2, 8, 5, 5, 1, 4, 5, 5, 4, 4, 1, 3, 2, 1, 6, 4, 2, 7, 4, 0, 8, 5, 4, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 04 2024

Keywords

Comments

Approximates Pi, correct to 7 digits.

Examples

			3.1415927300133056603139961890252155185995816071100335596565...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[2]*9801/4412, 10, 100]]
  • Python
    from math import isqrt
    def A374322(n): return isqrt(10**(n-1<<1)*96059601//9732872)%10 # Chai Wah Wu, Jul 04 2024

A339264 Decimal expansion of (63/25) * (17+15*sqrt(5)) / (7+15*sqrt(5)): an approximation for Pi from Srinivasa Ramanujan.

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 8, 0, 5, 6, 8, 8, 2, 0, 1, 8, 9, 8, 3, 9, 0, 0, 0, 6, 3, 0, 1, 5, 0, 7, 8, 2, 2, 4, 8, 7, 5, 0, 3, 4, 7, 5, 7, 7, 4, 3, 0, 9, 2, 2, 2, 8, 3, 8, 6, 6, 0, 9, 2, 8, 2, 2, 0, 4, 2, 4, 6, 3, 7, 4, 4, 5, 2, 5, 1, 1, 6, 3, 5, 4, 8, 9, 2, 9, 9, 6
Offset: 1

Views

Author

Bernard Schott, Nov 29 2020

Keywords

Comments

This formula that derives from Ramanujan modular equations is correct to 9 places exactly (see Ramanujan link, page 43).
Pi = 3.1415926535... and this approximation = 3.1415926538...
A quadratic number with minimal polynomial 168125x^2 - 792225x + 829521 and denominator 6725. - Charles R Greathouse IV, Oct 02 2022

Examples

			3.141592653805688201898390006301507822487503475774...
		

References

  • Jörg Arndt and Christoph Haenel, Pi Unleashed, Springer-Verlag, 2006, retrieved Jun 05 2013, (4.17) page 57.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Revised Edition), Penguin Books, 1997, entry 3.14159 (Pi), page 36.

Crossrefs

Other approximations to Pi: A068028, A068079, A068089, A328927.

Programs

  • Maple
    evalf((63/25)*(17+15*sqrt(5))/(7+15*sqrt(5)),100);
  • Mathematica
    RealDigits[(63/25)*(17 + 15*Sqrt[5])/(7 + 15*Sqrt[5]), 10, 100][[1]] (* Amiram Eldar, Nov 29 2020 *)
  • PARI
    (63/13450) * (503+75*sqrt(5)) \\ Michel Marcus, Nov 29 2020

Formula

Equals (63/13450) * (503+75*sqrt(5)).
Equals the root of 829521 - 792225*x + 168125*x^2 which is > 3. - Peter Luschny, Nov 29 2020
Showing 1-7 of 7 results.